Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики

Здесь есть возможность читать онлайн «Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Возможно ли, заглянув в пустой сосуд, увидеть карту нашей Вселенной? Ответ: да! Ведь содержимое пустого (на первый взгляд) сосуда — это бурлящий мир, полный молекул, которые мчатся с головокружительными скоростями. А поведение молекул газа иллюстрирует многочисленные математические теории, принципиально важные для понимания мироустройства. Именно исследования свойств газа позволили ученым ближе рассмотреть такие сложные понятия, как случайность, энтропия, теория информации и так далее. Попробуем и мы взглянуть на Вселенную через горлышко пустого сосуда!

Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Предположим что наш газ имеет три частицы В первом случае они будут - фото 78

Предположим, что наш газ имеет три частицы. В первом случае они будут ограничены верхней левой площадью коробки, отмеченной серым. Как видно, для этой области есть 25 возможных положений для каждой из частиц. Поскольку у нас есть три частицы, которые мы можем расположить где угодно без наложений, общее число микросостояний будет 25·24·23 = 13800.

Теперь обратим внимание на целую коробку. Ее сторона равна 10 единицам, так что общее число возможных позиций равно 100. Общее число микросостояний равно 100·99·98 = 970200. Итак, очевидно, что гораздо больше микросостояний совместимо со второй возможностью, чем с первой. Действительно, мы можем вычислить вероятность того, что газ окажется в верхнем углу. Это будет число совместимых микросостояний, разделенное на общее их число:

Итак существует 986 вероятности того что газ займет всю коробку Если бы - фото 79

Итак, существует 98,6 % вероятности того, что газ займет всю коробку. Если бы мы взяли больше частиц и более мелкую сетку, то получили бы более значительную разницу. Таким образом, модель распределения Больцмана говорит то же самое, что и термодинамика.

Можно задаться вопросом, существует ли какой-нибудь микроскопический способ понять энтропию термодинамики. Энтропия — это величина, которая возрастает в каждом изолированном процессе и дает нам меру разрежения энергии. Можем ли мы найти какую-то величину, которая бы тоже выросла в процессе, который мы только что изучили? Ответ — да: возросло число микросостояний. Если в начале мы насчитывали их 13 800, то в конце — почти миллион. Число микросостояний показывает нам, какова вероятность получения этого макросостояния; кроме того, разумно предположить, что система всегда эволюционирует в сторону наиболее вероятного состояния. Итак, мы можем прийти к выводу, что энтропия и число микросостояний могут быть каким-то образом связаны.

* * *

ЛЮДВИГ БОЛЬЦМАН И АТОМЫ

Людвиг Больцман(1844–1906) , портрет которого вы видите рядом с этими строками, был австрийским физиком, который ввел идею, что такие термодинамические явления, как температура, на самом деле — крупномасштабное проявление микроскопического поведения атомов. В то время само существование атомов еще вызывало дискуссии, и многие коллеги ученого отвергали его теорию, считая, что не существует никакого доказательства того, что материя состоит из элементарных частиц.

Больцман покончил жизнь самоубийством в 1906 году — как гласит легенда, из-за того, что научное сообщество отвергло его идеи. На самом деле это было связано с проблемами медицинского характера, а не с научным разочарованием. Через два года после смерти Больцмана Жан Батист Перрен(1870–1942) подтвердил существование атомов с помощью эксперимента над броуновским движением, в котором маленькие частицы пыли хаотично двигались, сталкиваясь с молекулами жидкости.

К этому же выводу пришел и Больцман которому удалось доказать что - фото 80

* * *

К этому же выводу пришел и Больцман, которому удалось доказать, что энтропия пропорциональна логарифму числа микросостояний, умноженному на его известную постоянную. Логарифм обозначается как log и является обратным экспоненте. Например, выражение log3 говорит нам, в какую степень мы должны возвести число 10, чтобы получить 3. Математически энтропия Больцмана выражается следующим образом:

S = k · log W ,

где S — энтропия, k — постоянная Больцмана и W — число микросостояний.

Энтропия как хаос

В популярной литературе часто встречается объяснение энтропии как хаоса. Теперь, когда мы знаем связь между энтропией и числом микросостояний, мы можем понять, почему это происходит. Самый простой способ увидеть это — обратить внимание на доску, покрытую шашками.

Предположим, что мы ставим шашки в порядке, как показано на рисунке.

Каково сейчас число микросостояний совместимых с этой конфигурацией Чтобы - фото 81

Каково сейчас число микросостояний, совместимых с этой конфигурацией? Чтобы найти его, воспользуемся рассуждениями из области комбинаторики, подобными приведенным в предыдущей главе. У нас 32 черные клетки и столько же белых. Мы ставим первую черную шашку на любое белое поле; для следующей есть только 31 вариант, и так далее. Следовательно, существует всего 32! способа распределить черные шашки, если считать, что они отличаются друг от друга. Точно так же есть 32! способа распределения белых шашек, так что всего у нас 32!·32! способов установить шашки, чтобы получить вышеуказанную конфигурацию.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики»

Представляем Вашему вниманию похожие книги на «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики»

Обсуждение, отзывы о книге «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x