Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики

Здесь есть возможность читать онлайн «Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Возможно ли, заглянув в пустой сосуд, увидеть карту нашей Вселенной? Ответ: да! Ведь содержимое пустого (на первый взгляд) сосуда — это бурлящий мир, полный молекул, которые мчатся с головокружительными скоростями. А поведение молекул газа иллюстрирует многочисленные математические теории, принципиально важные для понимания мироустройства. Именно исследования свойств газа позволили ученым ближе рассмотреть такие сложные понятия, как случайность, энтропия, теория информации и так далее. Попробуем и мы взглянуть на Вселенную через горлышко пустого сосуда!

Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теперь обратим внимание на газ, обладающий некоторым количеством возможных макросостояний, каждому из которых соответствуют некоторое давление, температура и объем. Мы хотим узнать, в каком из этих макросостояний находится газ. Поскольку макроскопические характеристики газа связаны с распределением скоростей его молекул, на самом деле мы хотим узнать это распределение.

Как мы видели, для этого мы не можем воспользоваться уравнениями Гамильтона, но зато мы можем использовать различные результаты, полученные ранее: например, то, что, перейдя в состояние равновесия, газ не выйдет из него и что все микроскопические конфигурации — или микросостояния — в нашей области фазового пространства равновероятны.

Поскольку все микросостояния равновероятны, разумно предположить, что макросостояние с наибольшим числом совместимых микросостояний будет наиболее вероятным. Если вероятность некоторого макросостояния намного выше, чем у любого другого, мы можем сделать вывод, что газ находится в нем. То есть наше макросостояние будет тем, для которого распределение скоростей наиболее вероятно.

Теперь нам осталось только выяснить, какое из возможных распределений скоростей имеет самую высокую вероятность.

Чтобы рассмотреть возможные состояния, нам нужно сделать небольшое упрощение: предположим, что все молекулы могут обладать только определенными значениями энергии, а не любыми в некотором диапазоне. Как только мы получим интересующее нас выражение, мы ослабим это условие. Энергии и скорости пропорциональны, так что, узнав распределение энергии, мы получим распределение скоростей.

Присвоим число каждому из этих значений энергии, от одного до k . У нас всего N частиц; число частиц с энергией i будет обозначаться N i . То есть если у нас есть 50 частиц первого уровня энергии, то N 1 = 50. Теперь предположим, что у нас есть некоторое распределение энергии.

Мы хотим узнать сколько комбинаций частиц дает нам именно это распределение У - фото 61

Мы хотим узнать, сколько комбинаций частиц дает нам именно это распределение. У нас всего 200 частиц, из которых 50 находятся на первом уровне энергии.

Пронумеруем наши частицы от одного до 200. Сколько существует возможных комбинаций, при которых на этом уровне находятся 20 частиц? Чтобы выяснить это, воспользуемся стратегией, очень похожей на ту, что мы применяли с биномиальным распределением.

Для первой частицы у нас есть 200 возможностей — столько, сколько у нас частиц. Для второй — 199, поскольку первая уже выбрана; для третьей — 198, и так далее. В итоге у нас получится:

200·199·198·197·…·151 возможностей.

Нам нужно разделить общее число возможных комбинаций между 50 частицами, которыми мы располагаем, так же как мы это делали с выпадением орла или решки. Так как у нас 50 частиц, получаем 50·49·…·1 возможностей. Число возможностей равно:

Если мы повторим эту операцию для каждого значения энергии то получим число - фото 62

Если мы повторим эту операцию для каждого значения энергии, то получим число конфигураций, совместимых с нашим распределением. Больцман доказал, что это число можно вычислить, пользуясь факториальными функциями:

С этим уравнением очень сложно работать так как оно содержит факториальные - фото 63

С этим уравнением очень сложно работать, так как оно содержит факториальные функции, которые, при больших значениях N , дают в результате огромные числа. Однако мы можем примерно понять возможные прогнозы.

У нашего газа есть заданная энергия. Так как она ограничена с внешней стороны, суммарная энергия не может измениться. Если бы у нас было много частиц с очень большой энергией, нам пришлось бы выбрать много частиц с небольшой энергией, чтобы компенсировать это. Поскольку количество энергии ограничено, число частиц с большой энергией также ограничено. Мы можем сделать вывод, что существует мало комбинаций, при которых у большого количества частиц очень большая энергия. Точно так же, если бы у большого количества частиц была очень небольшая энергия, нам пришлось бы выбрать много частиц с большой энергией, чтобы компенсировать это. Это означает, что сокращается число вариантов и, следовательно, существует мало комбинаций со значительным числом частиц с очень большой или очень небольшой энергией.

* * *

ВЫВЕДЕНИЕ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ БОЛЬЦМАНА

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики»

Представляем Вашему вниманию похожие книги на «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики»

Обсуждение, отзывы о книге «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x