Альберт Виолант-и-Хольц - Том 9. Загадка Ферма. Трехвековой вызов математике

Здесь есть возможность читать онлайн «Альберт Виолант-и-Хольц - Том 9. Загадка Ферма. Трехвековой вызов математике» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 9. Загадка Ферма. Трехвековой вызов математике: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 9. Загадка Ферма. Трехвековой вызов математике»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

На первый взгляд теорема Ферма кажется очень простой. Те, кто сталкиваются с ней впервые, обычно недоумевают: почему на протяжении 380 с лишним лет математики не могли ее доказать? Однако вскоре подобные иллюзии рассеиваются, и становится понятно: теорема Ферма — одна из сложнейших математических задач всех времен. Данная книга повествует не только о Пьере Ферма и его теореме, но также о британце Эндрю Уайлсе — гениальном математике, который бросил вызов грандиозной задаче и вышел из этой схватки победителем.

Том 9. Загадка Ферма. Трехвековой вызов математике — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 9. Загадка Ферма. Трехвековой вызов математике», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Связующее звено между двумя мирами

В конце 1980-х годов специалистам был известен ряд гипотез, в случае доказательства которых теорема Ферма также была бы доказана по меньшей мере для некоторых показателей степени. Среди этих гипотез — аbс -гипотеза, гипотеза Шпиро, гипотеза Войты, гипотеза Богомолова — Мияоки — Яу и другие. К удивлению многих, этот закрытый клуб должен был пополниться новым членом — гипотезой Таниямы — Симуры.

Гипотеза Таниямы — Симуры была сформулирована в 50-е и уточнена в 70-е годы XX века. В ней устанавливалось удивительное и неожиданное соотношение между двумя семействами математических объектов, на первый взгляд никак не схожих между собой: эллиптическими кривыми (тесно связанными с кубическими уравнениями, подобными тем, что изучал в свое время Диофант) и модулярными формами, разработанными французским математиком Анри Пуанкаре в конце XIX века. Эта гипотеза была плодом усилий двух японских математиков, Горо Симуры(р. 1930) и Ютаки Таниямы(1927–1958) . Молодые ученые познакомились и впоследствии вместе работали в Токио, в опустошенной послевоенной Японии. Прекрасная история их сотрудничества, увы, была омрачена трагическим финалом.

* * *

АВС-ГИПОТЕЗА

Эту гипотезу сформулировали в 1985 году Джозеф Эстерле и Дэвид Массер. В упрощенном виде она звучит так: если а, Ь, с— взаимно простые числа, такие, что а + b = с, и d— произведение различных простых множителей а, bи с, то dбудет лишь немногим меньше с.

* * *

Первый мир: эллиптические кривые

Приближенное значение длины кривой можно найти, соединив прямыми конечное множество точек этой кривой, как показано на рисунке:

По мере уменьшения отрезков сумма их длин все больше приближается к длине - фото 72

По мере уменьшения отрезков сумма их длин все больше приближается к длине кривой. Этот процесс известен под названием полигонального приближения кривой. Для некоторых кривых существует значение L — максимально возможный предел полигонального приближения. В этом случае говорят, что кривая имеет длину дуги L . В ходе изучения длин дуг кривых были открыты так называемые эллиптические функции, а затем эллиптические кривые.

Немецкий математик Карл Теодор Вильгельм Вейерштрасс(1815–1897) доказал, что любая эллиптическая кривая определяется кубической кривой вида

у 2= х 3+ ах 2+ Ьх + с ,

где a, b, с — вещественные числа. Для с = 0 и различных значений а и b эллиптические кривые обладают особым свойством, которое продемонстрировано на следующей странице.

Эллиптические кривые для с 0 и различных значений а и Ь Важной задачей - фото 73

Эллиптические кривые для с= 0 и различных значений а и Ь.

Важной задачей теории чисел, которую пытался решить еще Диофант, является поиск целых решений для уравнений подобного типа. Например, кубическое уравнение

у 2= x 3— 2

также можно записать в виде

x 3— у 2= 2.

Целое положительное решение этого уравнения равносильно тому, что натуральное число или числа находятся ровно «посередине» куба и квадрата любых других натуральных чисел. Первым из математиков на этот вопрос ответил не кто иной, как Пьер де Ферма, который доказал, что 26 — единственное число, которое удовлетворяет указанному условию, то есть х 3= 27 и у 2= 25, следовательно, единственными целыми положительными решениями этого уравнения будут у = 5 и х = 3. Чтобы продолжить эту удивительную цепочку, связывающую главных героев нашей истории, добавим, что одним из современных математических инструментов, используемых при изучении эллиптических кривых, является теория Ивасавы — тема докторской диссертации Эндрю Уайлса. Последний неспроста говорил: «В некотором смысле все мои рассуждения следуют пути, проложенному Ферма».

Немецкий математик Карл Теодор Вильгельм Вейерштрасс внесший важный вклад в - фото 74

Немецкий математик Карл Теодор Вильгельм Вейерштрасс, внесший важный вклад в теорию эллиптических кривых. Картина Конрада Фера.

Найти решения эллиптического уравнения в большинстве случаев практически невозможно, поэтому математики изучают их на «ограниченных» пространствах чисел, которые называются модулями. Чтобы понять, о чем идет речь, вспомним о том, как мы представляем часы в сутках. Если, например, речь идет о событии, которое произошло спустя 30 часов после полуночи, то очевидно, что это событие произошло в 6 утра (следующего дня). В уме мы подсчитали 24 целых часа (сутки), перешли к следующим суткам, а затем прибавили разницу, 30–24 = 6, чтобы точно определить час, когда произошло событие. На языке математики говорят, что часы в сутках описываются арифметикой по модулю 24 (по числу часов в сутках), и в этой арифметике, как мы уже увидели, выполняется равенство 30 картинка 756. Если вместо 30 часов мы будем говорить о 38, то событие произойдет в 14 часов, следовательно, в арифметике по модулю 24 верно равенство 38 14 (и, аналогично, 24 0). Вне зависимости от того, сколько часов прошло с определенного момента, 36 или 36000, значение часа всегда будет лежать в интервале от 0 до 23. В подобной арифметике определены привычные операции сложения, вычитания, умножения и деления и результатом любой такой операции опять-таки будет одно из 24 чисел, расположенных на интервале от 0 до 23.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 9. Загадка Ферма. Трехвековой вызов математике»

Представляем Вашему вниманию похожие книги на «Том 9. Загадка Ферма. Трехвековой вызов математике» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 9. Загадка Ферма. Трехвековой вызов математике»

Обсуждение, отзывы о книге «Том 9. Загадка Ферма. Трехвековой вызов математике» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x