Пере Грима - Том13. Абсолютная точность и другие иллюзии. Секреты статистики

Здесь есть возможность читать онлайн «Пере Грима - Том13. Абсолютная точность и другие иллюзии. Секреты статистики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том13. Абсолютная точность и другие иллюзии. Секреты статистики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том13. Абсолютная точность и другие иллюзии. Секреты статистики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков. Читатель совершит экскурс в теорию вероятностей, а также узнает о статистических исследованиях, предвыборных опросах и о том, какие рассуждения лежат в основе всех статистических тестов.

Том13. Абсолютная точность и другие иллюзии. Секреты статистики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том13. Абсолютная точность и другие иллюзии. Секреты статистики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Существует ли взаимосвязь между этими переменными Чтобы определить - фото 96

Существует ли взаимосвязь между этими переменными?

Чтобы определить, действительно ли полученный коэффициент корреляции свидетельствует о взаимосвязи (или, если говорить на языке статистики, является ли это значение статистически значимым), используем моделирование. Сгенерируем два множества случайных чисел по 35 чисел в каждом. Очевидно, что эти числа будут никак не связаны между собой, однако коэффициент корреляции между ними не будет строго равен нулю, а будет равняться, например, — 0,123. Если мы заново сформируем эти два множества случайным образом и повторим моделирование 10000 раз, то получим 10000 значений коэффициента корреляции между двумя совокупностями из 35 чисел, которые никак не связаны между собой. Чтобы рассчитать эти значения, используем небольшую программу. Результат ее работы представлен на следующей гистограмме. Вертикальной чертой обозначено значение коэффициента корреляции, полученное нами в предыдущем примере, равное 0,494.

Значения коэффициента корреляции для двух совокупностей из 35 не связанных - фото 97

Значения коэффициента корреляции для двух совокупностей из 35 не связанных между собой чисел.

Из гистограммы следует, что коэффициент корреляции действительно может принять полученное значение, если переменные не связаны между собой, но очевидно, что вероятность этого крайне мала. Анализ результатов моделирования показывает (на гистограмме это не заметно), что 12 значений больше 0,494, 9 — меньше —0,494. Это означает, что полученное нами значение (или большее) выпадает примерно два раза из 1000, если исходные переменные независимы.

Может ли быть так, что наш случай — именно тот, что выпадает два раза из 1000? Это неизвестно, но маловероятно. Разумнее всего полагать, что проанализированные нами переменные, соответствующие весу и росту 35 женщин в группе из 92 студентов, взаимосвязаны.

Схема рассуждений: проверка статистических гипотез

И в задаче, поставленной перед дегустатором чая, и в задаче о связи между переменными, которую мы только что рассмотрели, нужно ответить, по сути, на один и тот же вопрос: разумно ли считать, что дегустатор может различить вкус чая, приготовленного по-разному? Можно ли считать, что две переменные коррелируют? В обоих случаях, чтобы ответить на этот вопрос, нужно действовать по одной и той же схеме.

1. Нужно сформулировать исходную гипотезу. Чаще выбирается консервативная гипотеза: в задаче о дегустаторе чая мы предполагаем, что он не способен различить чай на вкус, а в задаче о корреляции — что переменные никак не связаны.

2. На основе доступных данных рассчитывается требуемая величина. Если данные отсутствуют или использовать их нельзя, нужно получить подходящие данные. В задаче о связи между переменными искомой величиной является коэффициент корреляции. В задаче о дегустаторе чая искомой величиной является число неверно указанных чашек во время эксперимента.

3. Если полученное значение находится в интервале, соответствующем исходной гипотезе, нет никаких оснований полагать, что исходная гипотеза ошибочна. Следовательно, мы будем по-прежнему ее придерживаться. Если полученное значение маловероятно, мы заменяем исходную гипотезу альтернативной (дегустатор может различить чай на вкус, переменные взаимосвязаны).

В учебниках по статистике исходная гипотеза называется нулевой гипотезой, альтернативная (верная в случае, когда исходная гипотеза не выполняется) совершенно ожидаемо называется альтернативной гипотезой. Вероятность, с которой может быть достигнуто полученное значение статистического показателя (при условии, что нулевая гипотеза верна), называется р-значение. Этому числу уделяется особое внимание в статистических исследованиях, так как именно оно указывает, следует ли придерживаться нулевой гипотезы или будет разумнее отказаться от нее.

В нашем случае, если дегустатор чая правильно указывает 4 чашки из 4, мы можем отвергнуть нулевую гипотезу с р -значением, равным 1,4 %. В задаче о взаимосвязи двух переменных р -значение равно 2 %: если бы переменные не были бы взаимосвязаны (нулевая гипотеза верна), то вероятность того, что коэффициент корреляции был бы равен или больше полученного нами, равнялась бы 2 %.

Что, если нулевую гипотезу нельзя опровергнуть?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том13. Абсолютная точность и другие иллюзии. Секреты статистики»

Представляем Вашему вниманию похожие книги на «Том13. Абсолютная точность и другие иллюзии. Секреты статистики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том13. Абсолютная точность и другие иллюзии. Секреты статистики»

Обсуждение, отзывы о книге «Том13. Абсолютная точность и другие иллюзии. Секреты статистики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x