Распределение максимального отклонения для сбалансированных игральных костей и значения, полученные экспериментально.
Очевидно, что данные эксперимента противоречат гипотезе о сбалансированности игральных костей. Если бы эта гипотеза была верна, то вероятность получить подобные данные была бы очень, очень мала. В этом случае р -значение равно нулю с точностью до нескольких знаков после запятой. Следовательно, мы можем утверждать, что игральные кости несбалансированны, а вероятность того, что мы ошибаемся, практически равна нулю.
В качестве показателя, обобщающего данные эксперимента, можно использовать не максимальное отклонение, а величину, в которой учитывается отклонение для всех шести возможных результатов броска игральной кости.
Такой величиной может быть сумма всех отклонений, равных разности фактической и теоретической частоты, возведенных в квадрат (чтобы положительные и отрицательные отклонения не скомпенсировали друг друга), разделенная на теоретическую частоту.
Для красной игральной кости эта величина будет равна
Расчеты могут показаться вам излишне сложными, но эта величина обладает определенным преимуществом: она не требует моделирования распределения для случая, когда нулевая гипотеза верна (так называемого эталонного распределения). Эта величина называется критерий х 2(хи-квадрат). Ее впервые использовал в 1900 году Карл Пирсон, сыгравший важную роль в истории статистики. Мы уже упоминали его имя, когда говорили о коэффициенте корреляции.
Для обычных статистических тестов нет необходимости в моделировании распределения величины. Вместо этого оно выводится с помощью математических методов. Формула для расчета распределения коэффициента корреляции достаточно сложна и не имеет своего названия, хотя при большом размере выборки это распределение близко к нормальному. Первым, кто вывел формулу для этого распределения, был не кто иной, как Рональд Эйлмер Фишер.
* * *
СЛИШКОМ МАЛОЕ ОТКЛОНЕНИЕ ТОЖЕ ПОДОЗРИТЕЛЬНО
Если мы бросим идеально сбалансированную игральную кость 20000 раз, то каждое из возможных значений выпадет примерно 20 000/6 = 3333 раза. Отклонение фактической и теоретической частоты редко превышает 250. Это происходит всего один раз на каждые 100000 симуляций.
Однако также весьма необычно, если фактические значения очень близки к теоретическим. Допустим, игральная кость была брошена 20000 раз и были получены следующие результаты:
Есть основания подозревать, что эта информация недостоверна, так как столь малое отклонение фактической и теоретической частоты встречается всего один раз на миллион.
Фишер обнаружил любопытное совпадение между экспериментальными данными, опубликованными Менделем в его знаменитых работах о наследственности, и ожидаемыми теоретическими значениями. Удивительнее всего то, что Мендель ошибочно спрогнозировал результаты некоторых экспериментов, но полученные данные тем не менее были подозрительно близки к прогнозным значениям. По мнению Фишера, данные скорректировал необязательно сам Мендель, а кто-то из его ассистентов, который недобросовестно отнесся к работе и решил подменить реальные данные именно теми, которые ожидал увидеть Мендель.
Этот вопрос спровоцировал бурное обсуждение. Эта задача относится не только к теории вероятности, но также к генетике и ботанике, так как в ней идет речь о фундаментальном механизме наследования признаков у растений. Споры не утихали длительное время, но какой-то определенный итог этих дискуссий подвести трудно. Стороны сходятся на том, что нет четких доказательств того, что Мендель или кто-то еще скорректировал результаты эксперимента.
* * *
До сих пор это верно, далее — нет: границы р -значения
Как правило, выбирается определенное p-значение, чаще всего 5 %, и если полученное на практике p-значение оказалось меньше, то нулевая гипотеза отвергается, в противном случае — нет. Это значение называется уровнем значимости.
Конечно, всем нам нравятся четкие и простые правила, но было бы неразумно выбрать одно универсальное значение и применять его всегда вне зависимости от контекста. Выбор граничного значения равносилен выбору вероятности того, что мы ошибочно отвергнем нулевую гипотезу. Вероятность ошибки, которую будет разумно выбрать, зависит от ситуации и возможных последствий ошибки.
Читать дальше