Хавьер Арбонес - Том 12. Числа-основа гармонии. Музыка и математика

Здесь есть возможность читать онлайн «Хавьер Арбонес - Том 12. Числа-основа гармонии. Музыка и математика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 12. Числа-основа гармонии. Музыка и математика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 12. Числа-основа гармонии. Музыка и математика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В мире существует несколько основных видов искусства, но музыка, безусловно, занимает в этом ряду главенствующую позицию. Неспроста многие великие мыслители отдавали пальму первенства именно музыке: она — удивительный симбиоз чистого вдохновения и строгого расчета, полета фантазии и рационального подхода. Музыка — живое доказательство единства творчества и математики. Из этой книги читатель почерпнет множество интересных фактов. Какие произведения нельзя сыграть, не разгадав их загадку? Почему существуют гармонические и диссонирующие аккорды? Благодаря чему мы в состоянии на слух отличить скрипку от трубы? Может ли певец разбить стекло силой своего голоса?
Как сформировалась современная музыкальная нотация и каким правилам она подчиняется? При ответе на эти и многие другие вопросы не обойтись без математики.

Том 12. Числа-основа гармонии. Музыка и математика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 12. Числа-основа гармонии. Музыка и математика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
картинка 84

В этом случае каждый ритм можно исполнить двумя способами, но нужно выбрать какой-то один. Сделать выбор поможет математика: для этого потребуется вычислить наименьшее общее кратное. В нашем примере НОК (2,3) — 6. Это означает, что нужно мысленно разделить такт на шесть равных частей. Восьмые ноты будут исполняться на счет 1 и 4, а триоль — на счет 1,3 и 5.

* * *

Современная нотация

Развитие музыкальной нотации как системы символов на протяжении нескольких веков привело к тому, что она стала удивительно эффективной. В ней сочетаются переменные (ноты и паузы) и постоянные элементы (ритм, ключи, такты), располагающиеся поверх основы (нотного стана). Рассмотрим конкретный пример.

Скорость исполнения мелодии постоянна: картинка 85= 60

Такты состоят из четвертных нот, на две слабые доли приходится одна сильная, поэтому такты имеют размер 3/4. На следующем рисунке представлена последовательность долей и акцентов, как если бы партитура представляла собой систему координат, в которой на оси абсцисс откладывается время в секундах.

Акценты располагаются равномерно с интервалом в три секунды Доли выстроены - фото 86

Акценты располагаются равномерно с интервалом в три секунды. Доли выстроены также равномерно с интервалом в одну секунду. Читать подобный график крайне неудобно. Для записи ритма требуются ключи, которые позволили бы упростить запись. Для этого в начале партитуры один раз указываются все постоянные значения: темп, акценты и, наконец, размер такта в уже известной вам системе обозначений (в нашем примере размер такта равен 3/4). Способ указания на темп вы тоже уже знаете: = 60.

Сохраняя горизонтальное расположение символов слева направо, подобно тому как располагаются символы на письме в западных языках, мы можем добавить к записи вертикальные линии в конце каждого такта. Это позволяет упростить нотацию:

Так как доли исполняются равномерно и в записи присутствуют вертикальные линии - фото 87

Так как доли исполняются равномерно и в записи присутствуют вертикальные линии, промежутки между нотами необязательно должны строго соответствовать длительности пауз между ними.

Отсутствие масштаба

Расположение элементов партитуры по горизонтали не соответствует какому-то конкретному масштабу. Это означает, что длительность нот и пауз необязательно зависит от длительности промежутков между нотами на партитуре. Артикуляция выполняется в соответствии с длительностью, которую указывают нота или пауза, а не в зависимости от того, насколько близко расположена следующая нота.

Два такта, изображенные на рисунке, одинаковы:

Однако важно помнить что при записи двух или более голосов рекомендуется - фото 88

Однако важно помнить, что при записи двух или более голосов рекомендуется выравнивать по вертикали ноты, исполняемые одновременно, чтобы упростить чтение партитуры. Так, графическое представление трех одновременно исполняемых ритмических фраз будет выглядеть следующим образом:

Глава 3 Геометрия композиции Кувшин придает форму пустоте музыка молчанию - фото 89

Глава 3

Геометрия композиции

Кувшин придает форму пустоте, музыка — молчанию.

Жорж Брак

Меня обвиняют в том, что я математик. Но я не математик, я геометр.

Арнольд Шёнберг

Объекты природы имеют подчас очень любопытную форму. При внимательном математическом анализе становится понятно, что растения, животные, кристаллические структуры и звуки подчиняются законам алгебры и геометрии. В природе часто встречаются сферы, циклы, спирали, равно как и симметрия. Художники находят вдохновение в причудливых формах природы и выстраивают свои произведения в новом порядке, подчиняющемся законам эстетики.

Музыка создает образы в представлении слушателей. Мелодии обычно сравнивают с рисунками из точек и линий. Мы уподобляем многие свойства музыки свойствам реальных предметов в пространстве: высокие звуки представляются нам узкими и вытянутыми вверх, низкие, напротив, невысокими и широкими. Подобные представления отчасти отражаются в партитурах. Например, последовательность звуков, высота которых непрерывно возрастает, называется восходящей.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 12. Числа-основа гармонии. Музыка и математика»

Представляем Вашему вниманию похожие книги на «Том 12. Числа-основа гармонии. Музыка и математика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 12. Числа-основа гармонии. Музыка и математика»

Обсуждение, отзывы о книге «Том 12. Числа-основа гармонии. Музыка и математика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x