Хавьер Арбонес - Том 12. Числа-основа гармонии. Музыка и математика

Здесь есть возможность читать онлайн «Хавьер Арбонес - Том 12. Числа-основа гармонии. Музыка и математика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 12. Числа-основа гармонии. Музыка и математика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 12. Числа-основа гармонии. Музыка и математика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В мире существует несколько основных видов искусства, но музыка, безусловно, занимает в этом ряду главенствующую позицию. Неспроста многие великие мыслители отдавали пальму первенства именно музыке: она — удивительный симбиоз чистого вдохновения и строгого расчета, полета фантазии и рационального подхода. Музыка — живое доказательство единства творчества и математики. Из этой книги читатель почерпнет множество интересных фактов. Какие произведения нельзя сыграть, не разгадав их загадку? Почему существуют гармонические и диссонирующие аккорды? Благодаря чему мы в состоянии на слух отличить скрипку от трубы? Может ли певец разбить стекло силой своего голоса?
Как сформировалась современная музыкальная нотация и каким правилам она подчиняется? При ответе на эти и многие другие вопросы не обойтись без математики.

Том 12. Числа-основа гармонии. Музыка и математика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 12. Числа-основа гармонии. Музыка и математика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

* * *

Посмотрим, как один и тот же звук (центральное до) изображается с помощью трех разных ключей:

На рисунке на предыдущей странице показано как с помощью различных ключей - фото 103

На рисунке на предыдущей странице показано, как с помощью различных ключей изменяется значение ноты, расположенной в заданной позиции нотного стана. На этом рисунке показано, как один и тот же звук изображается с помощью трех разных ключей.

Изменение полутонов

Иногда необходимо изменить высоту отдельной ноты. Существует два знака, обозначающих повышение или понижение высоты звука на полутон: знак #(диез) означает повышение на один полутон, знак картинка 104(бемоль) — понижение на один полутон. Существует третий знак, который отменяет действие диеза или бемоля для той ноты, перед которой он стоит. Этот знак называется бекар ( Эти знаки располагаются на линии или промежутке между линиями нотного стана - фото 105).

Эти знаки располагаются на линии или промежутке между линиями нотного стана и - фото 106

Эти знаки располагаются на линии или промежутке между линиями нотного стана и изменяют все звуки, находящиеся справа от них до конца такта. Если знак диеза, бемоля или бекара указан в начале партитуры (между ключом и числовым обозначением размера такта), это означает, что будут изменены все ноты, находящиеся на одной линии с этим знаком.

Мелодическая кривая

Когда мы слушаем музыку, даже если мы не разбираемся в музыкальной нотации, мы часто представляем себе кривую или ломаную линию, состоящую из восходящих и нисходящих частей. Весьма вероятно, что эта кривая «движется» слева направо, в том же направлении, как и буквы на письме. Некоторые мелодии представляются нам в виде плавных кривых без больших перепадов, другие, напротив, имеют ярко выраженные перепады высот. Интересно, что эти линии в некотором роде соответствуют расположению нот на нотном стане. Рассмотрим пример партитуры и соединим головки нот непрерывной кривой, как в известной детской игре, где нужно соединять точки линиями:

Плавная мелодия и соответствующая ей кривая Если бы мы могли услышать - фото 107

Плавная мелодия и соответствующая ей кривая.

Если бы мы могли услышать мелодию, записанную в этой партитуре, то заметили бы, что она не имеет резких перепадов. Если для мелодии характерны резкие изменения высоты звуков, то ей будет соответствовать линия с резкими перепадами высоты, подобная той, что показана на рисунке:

Мелодия со значительными перепадами высоты звуков Геометрическомузыкальные - фото 108

Мелодия со значительными перепадами высоты звуков.

Геометрическо-музыкальные преобразования

В гештальтпсихологии (термин «гештальт» не имеет однозначного перевода и может означать «форма», «структура» или «очертание») считается, что разум человека способен выбирать и группировать части целого, а также упорядочивать их, выделяя среди остальных. Этот процесс развивается во времени благодаря тому, что мы обладаем памятью, за счет чего способны видеть движение предметов при быстрой смене кадров и воспринимать музыкальные композиции. Предметом изучения гештальтпсихологии являются процессы восприятия. Были сформулированы определенные принципы, характерные для этих процессов. Согласно принципу замкнутости, наше восприятие имеет тенденцию завершать незамкнутые фигуры. Так, изображения, содержащие неполную информацию, например пейзажи импрессионистов, состоящие из множества разноцветных точек, с определенного расстояния кажутся реалистичными и правдоподобными. Это же происходит, когда мы смотрим кино: непрерывное движение, которое мы видим на экране, не более чем иллюзия, вызванная особенностями нашего восприятия. Законы гештальта применимы и в музыке. Они позволяют слушателю выявлять похожие звуки и мелодический рисунок, подобно тому как зритель кинофильма распознает похожие образы.

Многие композиторы при создании своих произведений умышленно использовали принципы и приемы геометрии. В некоторых случаях они наглядно проявляются при взгляде на партитуру, в других — находят непосредственное воплощение в звуках. Некоторые композиции имеют структуру, обладающую интересными геометрическими свойствами. Таковы, например, каноны. Сама их форма серьезно влияет на мелодию, из-за чего создание таких произведений становится вдвойне сложнее. Композитор не просто должен создать красивую мелодию — последовательность звуков должна подчиняться строгим математическим правилам. В некоторых композициях в качестве художественных приемов специально используются геометрические преобразования.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 12. Числа-основа гармонии. Музыка и математика»

Представляем Вашему вниманию похожие книги на «Том 12. Числа-основа гармонии. Музыка и математика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 12. Числа-основа гармонии. Музыка и математика»

Обсуждение, отзывы о книге «Том 12. Числа-основа гармонии. Музыка и математика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x