Клауди Альсина - Том 11. Карты метро и нейронные сети. Теория графов

Здесь есть возможность читать онлайн «Клауди Альсина - Том 11. Карты метро и нейронные сети. Теория графов» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 11. Карты метро и нейронные сети. Теория графов: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 11. Карты метро и нейронные сети. Теория графов»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Наш мир полон не только букв и цифр, но и самых разных изображений. Это картины, фотографии, произведения искусства, многочисленные схемы… Вспомните схему вашей линии метро или автобусного маршрута — это всего лишь линия с точками, рядом с которыми подписаны названия остановок. Подобные схемы из точек и линий называются графами. Именно о них вы узнаете, прочитав эту книгу.

Том 11. Карты метро и нейронные сети. Теория графов — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 11. Карты метро и нейронные сети. Теория графов», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

* * *

Деревья, за которыми виден лес

Дерево — это очень простой граф, все вершины которого соединены так, что отсутствуют циклы, как, например, на следующем рисунке:

В дереве можно проложить маршрут между любыми двумя вершинами Далее приведены - фото 24

В дереве можно проложить маршрут между любыми двумя вершинами.

Далее приведены все возможные деревья с числом вершин от 1 до 8.

Последовательность чисел обозначающих количество всех возможных деревьев для - фото 25

Последовательность чисел, обозначающих количество всех возможных деревьев для каждого числа вершин, выглядит так: 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159…

Если дерево имеет р вершин, то в нем всегда будет р — 1 ребер, но для каждого значения р можно изобразить р р -2разных деревьев (формула Кэли). Понятие дерева впервые ввел Кэли в 1857 году. Деревья образуют очень важный класс графов, так как в них все вершины соединены минимально возможным числом ребер. Благодаря этому деревья находят интересное применение в самых разных областях: при проектировании электрических цепей, телефонных сетей, при поиске маршрутов между населенными пунктами и так далее.

Следующая простая и красивая теорема дает характеристику деревьям, а также имеет крайне важное практическое значение:

«Граф G является деревом тогда и только тогда, когда между любыми двумя различными его вершинами u и v существует единственный путь. Это равносильно следующему утверждению: С является связным графом, если он имеет р вершин и р — 1 ребро».

Несмотря на простоту этой теоремы, число возможных деревьев по мере увеличения р возрастает очень быстро.

Причина этому такова. Пусть G — дерево. Даны две вершины G, u и v . Так как граф G является связным, то существует по меньшей мере один путь между u и v . Если бы между этими вершинами существовало два пути, С 1 и С 2 , то в графе G образовался бы цикл, что невозможно. Разумеется, если между двумя произвольными вершинами графа существует единственный путь, граф является связным и не содержит циклов.

* * *

ДЕРЕВЬЯ И ВЕРОЯТНОСТИ

При анализе вероятностей различных событий (например, в играх) возможные альтернативные исходы и соответствующие вероятности часто представляют в форме дерева, где вершины соответствуют возможным исходам, а ребра — значениям вероятностей возможных исходов. Соответствующие расчеты выполняются на основе дерева. На рисунке представлено дерево, соответствующее игре, в которой нужно бросить сначала монету, затем — кубик. В теории игр, которая широко применяется в экономике, подобные представления используют очень часто.

Для расчета вероятностей нужно четко представлять все возможные исходы - фото 26

Для расчета вероятностей нужно четко представлять все возможные исходы.

* * *

У. УИНГФИЛД И А. А. МАРКОВ : ТЕННИС И ТЕОРИЯ ГРАФОВ

Уолтер Уингфилд(1833–1912) запатентовал игру под названием теннис в феврале 1874 года. Андрей Андреевич Марков(1856–1922) занимался изучением последовательностей случайных событий, которые позднее стали называться цепями Маркова. Цепь Маркова представляет собой ориентированный граф, вершинам которого соответствуют состояния, а дугам — переходы из одного состояния в другое в зависимости от вероятности исходного события, но не всей последовательности предшествующих событий. Уингфилда и Маркова объединяет работа А. Л. Садовского и Л. Е. Садовского «Математика и спорт», в которой цепи Маркова используются для анализа теннисных партий. Так, на рисунке вероятности возможных исходов для каждого события соответственно равны 0,6 и 0,4.

Рассмотрим задачу которую можно решить с помощью деревьев Даны n - фото 27

* * *

Рассмотрим задачу, которую можно решить с помощью деревьев. Даны n городов A 1, А 2А n . Зная затраты на установление сообщения между каждой парой городов (стоимость строительства дорог, прокладки водо- и газопровода, линий электропередачи, телефонных линий), определите, как можно соединить города самым дешевым способом. Очевидно, что сеть «экономических связей» будет деревом, так как все города должны быть связаны друг с другом и не должно существовать циклов. Если бы в этой сети существовал цикл, можно было бы удалить одно из его ребер и все города по-прежнему были бы соединены между собой, но уже при меньших затратах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 11. Карты метро и нейронные сети. Теория графов»

Представляем Вашему вниманию похожие книги на «Том 11. Карты метро и нейронные сети. Теория графов» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Дилан Томас - Карта любви
Дилан Томас
Отзывы о книге «Том 11. Карты метро и нейронные сети. Теория графов»

Обсуждение, отзывы о книге «Том 11. Карты метро и нейронные сети. Теория графов» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x