Представим на мгновение все возможные многогранники — правильные или неправильные. Если мы нарисуем все эти многогранники, то заметим, что всегда существует как минимум несколько граней, которые являются выпуклыми многоугольниками с одинаковым числом сторон. Чтобы ограничить многоугольниками какую-то область пространства, необходимо чтобы как минимум несколько из них повторялись.
Графы и мозаики
Рассмотрим три разных мозаики, которые представлены на рисунке. Все они, несомненно, знакомы вам, так как часто встречаются в повседневной жизни.
Это четырехугольная, треугольная и шестиугольная мозаики соответственно. Каждая из них представляет собой геометрический граф (определение геометрического графа приводилось выше). Число граней в этих графах может увеличиваться бесконечно: любым из этих графов можно заполнить всю плоскость. Заметим, что при увеличении мозаики для вершин, находящихся внутри, число ребер остается неизменным, и каждая грань ограничивается одним и тем же числом ребер за исключением бесконечно удаленных граней. Если на каждом шаге увеличения мозаики мы будем подсчитывать число вершин V и число вершин V c , расположенных на краю (во внешнем цикле графа), то увидим, что с ростом V отношение V c / V стремится к нулю.
Это справедливо для всех трех рассмотренных типов мозаики. Далее мы продемонстрируем удивительный результат, основанный на следующем определении.
Правильная мозаика — это геометрический граф, который может покрыть плоскость; при этом число ребер а , сходящихся в каждой вершине, и число ребер Ь >= 3 каждой грани являются постоянными (за исключением внешних граней), причем V c / V стремится к нулю.
Единственно возможными правильными мозаиками в соответствии с этим определением являются треугольная, четырехугольная и шестиугольная мозаики.
Пусть дана правильная мозаика М , которая имеет V вершин, А ребер и V c граничных вершин. Тогда 2 А < aV , так как aV — это общее число ребер, получаемое, если поставить в соответствие каждой вершине (включая граничные) а ребер.
Если же мы не будем учитывать ребра, которые выходят из граничных вершин, получим аV — aV c < 2 А .
Объединив эти два неравенства, имеем aV — aV c < 2 А < a V .
Разделим все части неравенства на 
Перейдем к пределу. При V , стремящемся к бесконечности, V c / V стремится к нулю:
Подсчитаем число граней С мозаики М . С — 1 грань будет иметь Ь ребер, бесконечно удаленная грань будет иметь V c ребер. Следовательно,
( C — 1) b + V c = 2 А .
Разделив на bV , получим:
Перейдя к пределу при V , стремящемся к бесконечности, с учетом выражения (*) получим:
(**)
Так как мозаика М — это геометрический граф, для нее выполняется формула Эйлера, которую можно записать в следующем виде:
При переходе к пределу имеем:
Иными словами, постоянные а и Ь связывает равенство
2 а + 2 Ь = ab ,
что можно записать в таком виде:
( а — 2)( Ь — 2) = 4.
Все возможные натуральные решения этого уравнения представлены в таблице:
Интересно, что это доказательство относится исключительно к теории графов и не зависит от каких-либо геометрических свойств (расстояний, углов, параллельности сторон) фигур, образующих мозаику. Например, следующие мозаики относятся к тем же трем типам, хотя очевидно состоят из других фигур. Единственная разница заключается в изоморфизме соответствующих им графов.
Читать дальше