Антонио Дуран - Том 27. Поэзия чисел. Прекрасное и математика

Здесь есть возможность читать онлайн «Антонио Дуран - Том 27. Поэзия чисел. Прекрасное и математика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 27. Поэзия чисел. Прекрасное и математика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 27. Поэзия чисел. Прекрасное и математика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Поэзия — недоказуемая истина. Математика же, напротив, состоит из доказательств. И все-таки у этих двух сфер есть что-то общее. Ученый Анри Пуанкаре писал: «Думать, что математика затрагивает лишь интеллект, означало бы забыть о красоте математики, элегантности геометрии, которые прекрасны в самом полном смысле этого слова». Математик находится посередине между наукой и искусством, и это подтверждает неизбежную связь между самой абстрактной из наук и человеческими эмоциями. Цель этой книги — на нескольких ярких примерах показать красоту математики.

Том 27. Поэзия чисел. Прекрасное и математика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 27. Поэзия чисел. Прекрасное и математика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Философ Иммануил Кант(1724–1804) был представителем нового поколения. Он родился и прожил почти всю жизнь в Кёнигсберге (ныне Калининград). Эйлер тоже имел отношение к Кёнигсбергу, хотя никогда не жил в этом городе: он родился в Базеле, занимался математикой в Санкт-Петербурге и Берлине. Однако именно Эйлер решил знаменитую задачу о семи мостах Кёнигсберга. В XVIII веке в городе было семь мостов, соединявших его части с островами на реке Прегель. Жители Кёнигсберга хотели узнать, можно ли обойти все мосты, не проходя ни по одному из них дважды. Эйлер путем простых, но очень наглядных рассуждений, которые позднее дали начало теории графов, показал, что искомого пути не существует.

Портрет Иммануила Канта17241804 одного из ведущих философов в истории - фото 93

Портрет Иммануила Канта(1724–1804), одного из ведущих философов в истории человечества.

Учитывая, какое определение Кант дает возвышенному, не будет преувеличением сказать, что источником его вдохновения могли стать рассуждения о бесконечно малых величинах, принадлежавшие Эйлеру или любому другому математику XVIII столетия, хотя Эйлер выразил силу бесконечно малых лучше остальных. «Возвышенно то, — писал Кант в «Критике способности суждения», — в сравнении с чем все остальное мало… Возвышенно то, одна возможность мыслить которое доказывает способность души, превосходящую любой масштаб чувств. Представляя возвышенное в природе, душа ощущает себя взволнованной, тогда как при эстетическом суждении о прекрасном она находится в состоянии спокойного созерцания. Эту взволнованность можно (особенно в ее первые минуты) сравнить с потрясением, то есть быстро сменяющимся отталкиванием и притяжением одного и того же объекта» [12] Перевод М. И. Левиной — Примеч. ред . .

Характеристики «в сравнении с чем все остальное мало» и «превосходит любой масштаб чувств», которые использует Кант в своем толковании возвышенного, есть не что иное, как выражение противоречащей здравому смыслу формулы N + 1 = N , описывающей свойство бесконечно больших величин. Эту формулу Эйлер не раз использовал в своем «Введении в анализ бесконечно малых». И это «волнение души» возникает в сердце математика тогда, когда он видит формулу N + 1 = N или замечает в знаменателе дроби величину, которая спустя две строки исчезает, обращаясь в ноль.

С другой стороны, кантовское «волнение» — это чувство, которое мы испытываем, когда видим, каких результатов добился Эйлер, применив удивительные свойства бесконечно малых величин. Читая рассуждения Эйлера, мы неизменно чувствуем «потрясение, то есть быстро сменяющееся отталкивание и притяжение одного и того же объекта», точнее, главных героев его книги — бесконечно малых величин.

Очарование географических открытий

Рассуждения Эйлера известны тем, что не отличаются особой логической строгостью. Поэтому в XIX веке математики решили заменить бесконечно большие и бесконечно малые величины понятием предела. Математические выкладки Эйлера не слишком точны. Однако это лишь первое впечатление: сегодня нам известно, что анализ, в котором используются бесконечно малые, столь же строг, как и современные рассуждения, в которых используются пределы. Строго говоря, логический фундамент анализа XVIII века сформировал Абрахам Робинсон в 1966 году. На основе теории моделей он показал, что вещественные числа можно расширить множеством бесконечно малых, с которыми производятся стандартные арифметические операции. Созданный им раздел математики получил название «нестандартный анализ».

Математик Абрахам Робинсон19181974 автор нестандартного анализа Не думаю - фото 94

Математик Абрахам Робинсон(1918–1974), автор нестандартного анализа.

Не думаю, что Эйлеру не давала спать избыточная или недостаточная строгость его рассуждений. Самого Эйлера, как и Декарта, Ньютона и Лейбница, волновали открытия, а не доказательства. Это особенно ярко звучит в предисловии к «Введению в анализ бесконечно малых», где постоянно встречаются слова «вникнуть в суть», «решить», «изобрести», а вот «показать» или «доказать» не упоминаются вовсе.

«Введение в анализ бесконечно малых» построено так, что новые идеи предстают перед нами подобно тому, как перед глазами изумленных первооткрывателей эпохи Возрождения представали чудеса природы. Эта книга не имеет ничего общего со скучнейшими логическими рассуждениями, которыми изобилуют современные работы по математике. Чтение «Введения в анализ бесконечно малых» подобно исследованию неизвестных уголков Земли. Эта книга напоминает мне заметки Антонио Пигафетта о кругосветном путешествии Магеллана и рассказы Хуана Себастьяна Элькано, который возглавил экспедицию после смерти Магеллана. Эйлер не умалчивает о бесплодных, но наглядных попытках решить те или иные задачи, подобно тому, как Пигафетта повествует о тщетных попытках Магеллана найти путь из Атлантического океана в Тихий.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 27. Поэзия чисел. Прекрасное и математика»

Представляем Вашему вниманию похожие книги на «Том 27. Поэзия чисел. Прекрасное и математика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 27. Поэзия чисел. Прекрасное и математика»

Обсуждение, отзывы о книге «Том 27. Поэзия чисел. Прекрасное и математика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x