Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.

Здесь есть возможность читать онлайн «Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 28. Математика жизни. Численные модели в биологии и экологии.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 28. Математика жизни. Численные модели в биологии и экологии.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Жизнь — одно из самых прекрасных и сложных явлений на планете, изучением которого с начала XX века занимается не только одна биология. Физики, а затем и математики обнаружили, что некоторые биологические явления можно описать с помощью математического языка. Так родилась новая дисциплина — математическая биология, или биоматематика. Благодаря ей сегодня можно получить ответы на множество важных вопросов, касающихся биологии и биомедицины. Эта книга представляет собой панорамный обзор различных явлений, которые изучает биоматематика.

Том 28. Математика жизни. Численные модели в биологии и экологии. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 28. Математика жизни. Численные модели в биологии и экологии.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Бельгийская марка выпущенная в честь Ильи Пригожина19172003 за два года до - фото 13

Бельгийская марка, выпущенная в честь Ильи Пригожина(1917–2003) за два года до смерти этого выдающегося русского ученого.

Еще одной характеристикой систем, далеких от равновесного состояния, являются их колебания. В качестве примера приведем знаменитые уравнения «хищник — жертва» Лотки — Вольтерры. К сожалению, не существует универсальных принципов, управляющих формированием описанных узоров в диссипативных системах. Однако если система находится в равновесии, образования узоров не происходит. К примеру, трехмерное представление белка всегда остается неизменным. Почему? Ответ прост: белок находится в наиболее стабильном состоянии, требующем минимальных энергозатрат. Еще один пример системы, находящейся в равновесном состоянии, — химическая реакция:

А + В —> С + D .

Если вещества А и В преобразуются в С и D с той же скоростью, что С и D преобразуются обратно в А и В , то реакция находится в равновесном состоянии. Предположим, что равновесие оказалось нарушено. Если скорость, с которой вещества А и В преобразуются в С и D , не равна скорости протекания обратного процесса, реакция будет находиться в неравновесном состоянии. Общих правил, описывающих неравновесные, диссипативные системы, не существует, как и общего математического метода их изучения, поэтому используется компьютерное моделирование — особенно полезное с учетом того, что в жизни встречается множество примеров диссипативных систем. Описанные выше идеи постепенно сформировали современное видение биологии и, как следствие, способствовали ее математической формализации.

Современная математическая биология

Изучение систем, находящихся в неравновесном состоянии, и поиск вычислительных методов, позволяющих смоделировать подобные системы, стали популярны в 1980-е и 1990-е годы при изучении нелинейных систем, то есть систем, поведение которых нельзя представить как сумму поведений их частей. Основная причина этого в том, что части нелинейных систем взаимодействуют друг с другом. Вновь рассмотрим примитивный живой организм z и предположим, что он имеет всего два органа — х и у . Если поведение этого организма нелинейное, то жизненное состояние организма f( z ) будет равно, к примеру, произведению, а не сумме состояний его органов f( х ) и f( у ). В качестве примера из повседневной жизни можно привести прием лекарств.

Если вы примете два лекарства или более, их совокупный терапевтический эффект не будет равен сумме эффектов отдельных медикаментов. Как правило, они вступают в реакцию между собой, причем часто во вред организму.

Нелинейные системы их сложно изучить так как не существует одного - фото 14

Нелинейные системы: их сложно изучить, так как не существует одного математического метода, описывающего их все, хотя их поведение и похоже. К примеру, если мы подтолкнем маятник, он будет совершать колебания до тех пор, пока не остановится. Похожие ситуации наблюдаются в иммунной системе и в долговременной памяти человека.

Любопытная особенность нелинейных систем состоит в том, что их поведение может быть хаотическим. Хаотические системы — это системы, обладающие сложным поведением, которое непросто спрогнозировать, так как они одновременно стремятся к равновесному состоянию и отдаляются от него. К примеру, атмосфера и климат, тектонические плиты, эпилепсия, популяции и многие другие явления, о которых мы расскажем в этой книге, представляют собой хаотические системы и описываются уравнением Ферхюльста. Изучение хаоса стало популярным в биологии благодаря фракталам — их характерным примером в природе является ветвление растений.

В середине 1980-х ученые объединили нелинейные, хаотические и диссипативные системы в одно целое — сложные системы, изучению которых в биологии уделяется наибольшее внимание. К таким системам относятся, например, муравейники, мозг, иммунная система, клетка, морфогенез или экосистемы. В некоторых случаях сложные системы изучаются с применением стандартных методов математической биологии. Однако некоторые системы настолько сложны, что изучить их можно только альтернативными компьютерными методами, позволяющими найти лишь приближенные решения. Такие методы называются эвристическими. К примеру, в настоящее время метод клеточных автоматов является одной из альтернатив моделированию сложных систем, для которых неизвестны описывающие их дифференциальные уравнения. Классический пример клеточного автомата — колония муравьев. В некоторых случаях, несмотря на то что дифференциальные уравнения, описывающие систему, известны (например, в случае с пятнами на коже позвоночных), поведение системы быстрее и удобнее смоделировать с помощью клеточных автоматов. Кроме того, клеточные автоматы позволяют наглядно изобразить узоры, к примеру полоски зебры, что при использовании дифференциальных уравнений невозможно. Еще одним примером служит клеточный автомат Ва-Top, описывающий модель «хищник — жертва» Лотки — Вольтерры.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 28. Математика жизни. Численные модели в биологии и экологии.»

Представляем Вашему вниманию похожие книги на «Том 28. Математика жизни. Численные модели в биологии и экологии.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Константин Паустовский - Том 5. Повесть о жизни. Книги 4-6
Константин Паустовский
Константин Паустовский - Том 4. Повесть о жизни. Книги 1-3
Константин Паустовский
Отзывы о книге «Том 28. Математика жизни. Численные модели в биологии и экологии.»

Обсуждение, отзывы о книге «Том 28. Математика жизни. Численные модели в биологии и экологии.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x