Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.

Здесь есть возможность читать онлайн «Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 28. Математика жизни. Численные модели в биологии и экологии.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 28. Математика жизни. Численные модели в биологии и экологии.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Жизнь — одно из самых прекрасных и сложных явлений на планете, изучением которого с начала XX века занимается не только одна биология. Физики, а затем и математики обнаружили, что некоторые биологические явления можно описать с помощью математического языка. Так родилась новая дисциплина — математическая биология, или биоматематика. Благодаря ей сегодня можно получить ответы на множество важных вопросов, касающихся биологии и биомедицины. Эта книга представляет собой панорамный обзор различных явлений, которые изучает биоматематика.

Том 28. Математика жизни. Численные модели в биологии и экологии. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 28. Математика жизни. Численные модели в биологии и экологии.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В общем случае такая модель — это компьютерная программа, написанная на одном из языков программирования ( Visual Basic, С/C++, Java и т. д.). Моделирование заключается в том, чтобы заставить математическую модель работать на компьютере в поисках ответа на вопросы, касающиеся будущего состояния системы: «что произойдет, если…?». Таким образом, компьютер превращается в пробирку, подлинную лабораторию, где можно исследовать явления, которые нельзя изучить при полевых исследованиях или в лаборатории.

Существует несколько способов компьютерного моделирования. Во-первых, оно может заключаться в определении начальных условий и будущего состояния системы. Начальные условия — это значения входных переменных модели (они известны), на основе которых выполняется прогноз. Ученые называют отправную точку модели нулевым моментом времени, поэтому начальные условия записываются так: I 1(0), I 2(0)…, I n(0). К примеру, если на сегодняшний день свиным гриппом заболели 1247 человек, из которых 1240 выжили, семь — умерли, то начальные условия таковы: I 1(0) = 1247, I 2(0) = 1240 и I 3(0) = 7. Зная эти начальные условия и применив вычислительную модель эпидемии, можно задаться вопросом: сколько человек заболеют гриппом через семь дней?

Во-вторых, моделирование может заключаться в изменении параметров и оценке воздействия новых значений на будущее состояние системы. Что произойдет в примере со свиным гриппом, если вместо уровня смертности в 0,78 % использовать значение в 2,96 %? Каким в этом случае будет уровень смертности через месяц?

В-третьих, моделирование может заключаться в определении будущего состояния системы при заданных начальных условиях и некоторых значениях определенных параметров.

* * *

СРАВНЕНИЕ МОДЕЛЕЙ

В некоторых ситуациях моделирование может состоять в прогнозировании явления путем сравнения прогнозов, полученных с помощью различных вычислительных моделей. Такая ситуация может сложиться, когда одно явление описывается несколькими математическими моделями. К примеру, можно сравнить различные математические модели климата для одной и той же ситуации, смоделировать поведение колонии муравьев с помощью разных вычислительных моделей или определить число хищников и жертв, сравнив данные, полученные с использованием клеточных автоматов, с данными, полученными по уравнениям Лотки — Вольтерры.

Увеличение объема метана в земной коре и стратосфере согласно вычислительной - фото 16

Увеличение объема метана в земной коре и стратосфере согласно вычислительной модели в сравнении с другими моделями, описывающими это же явление.

* * *

Программы для символьных вычислений

Программы для символьных вычислений позволяют обрабатывать математические выражения в символьном виде. Подобные программы появились в 1960-е и стали первым коммерческим продуктом, в котором использовался искусственный интеллект. Первыми пользователями этих программ стали физики, со временем к ним присоединились и другие ученые. На заре эпохи символьных вычислений родились такие программы, как Schoonschip и MathLab , однако лишь с развитием muMath, Reduce, Macsyma и Derive программы для символьных вычислений обрели популярность в научных кругах. Сегодня эти приложения используются в университетах, учебных центрах, а также при реализации научных и инженерных проектов. Самыми популярными коммерческими программами для символьных вычислений являются Maple и Mathematica , а также бесплатные SciLab и Octave .

SciLab бесплатная программа для научных расчетов и символьных вычислений - фото 17

SciLab — бесплатная программа для научных расчетов и символьных вычислений.

Эти приложения незаменимы в математической биологии — при изучении динамических систем в экологии, эпидемиологии, фармакологии и т. д. Программы для символьных вычислений не только позволяют редактировать и исправлять выражения, но и содержат много других возможностей: с их помощью можно строить графики в двух и трех измерениях, использовать внешние программы или библиотеки процедур, имеющих различное применение в вычислительной химии и т. д. В них используются методы эволюционных вычислений, методы биоинформатики, статистические методы, дифференциальные уравнения и многое другое. Среди задач, решаемых с помощью программ символьных вычислений, выделяется упрощение выражений, разложение в ряд Тейлора, разложение многочленов на множители, вычисление пределов, производных и интегралов, выполнение операций с матрицами и векторами.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 28. Математика жизни. Численные модели в биологии и экологии.»

Представляем Вашему вниманию похожие книги на «Том 28. Математика жизни. Численные модели в биологии и экологии.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Константин Паустовский - Том 5. Повесть о жизни. Книги 4-6
Константин Паустовский
Константин Паустовский - Том 4. Повесть о жизни. Книги 1-3
Константин Паустовский
Отзывы о книге «Том 28. Математика жизни. Численные модели в биологии и экологии.»

Обсуждение, отзывы о книге «Том 28. Математика жизни. Численные модели в биологии и экологии.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x