Эта особенность растений получила название филлотаксиса Фибоначчи. Так, числа Фибоначчи описывают расположение листьев растений, при котором их освещенность будет оптимальной. Представьте, что лист соперничает с соседними за доступ к солнечному свету. Каким будет оптимальное расположение листьев, обеспечивающее наибольшую освещенность каждого листа? Ответ дает последовательность Фибоначчи.
Продолжив исследования, Тьюринг совершил свое самое знаменитое открытие в этой области — он создал математическую модель «реакция — диффузия». Свои идеи ученый изложил в статье «Химическая основа морфогенеза», опубликованной в престижном научном журнале Лондонского королевского общества в 1952 году. Тьюринг был математиком, а не биологом, поэтому он попытался объяснить интересовавшее его явление с помощью дифференциальных уравнений. Он задался вопросом: каким образом в однородной ткани клеток, в зачаточном состоянии очень похожих друг на друга, например клеток кожи позвоночных, образуются полоски или пятна? С биологической точки зрения эти полоски или пятна — проявление различий между пигментными и непигментными клетками. Как следствие, полоски на шкуре зебры будут результатом нарушения изначального единообразия зародышевых клеток кожи.
Тьюринга интересовал биологический механизм, ведущий к появлению подобных узоров. Ученый предполагал, что полученный узор представляет собой нестабильное состояние, поскольку стабильным состоянием является единообразие зародышевых клеток без характерного узора. С помощью компьютера Ferranti Mark I Тьюринг провел ряд экспериментов по моделированию и доказал, что полученный узор на коже зависит от значений параметров математической модели.
Полоски на шкуре зебры — один из примеров, описываемых уравнениями «реакция — диффузия» Тьюринга.
Параметр математической модели — это значение, соответствующее какому-либо свойству, которое нельзя оценить напрямую, в ходе наблюдений. Тьюринг выявил несколько закономерностей, очень похожих на те, что описывают распределение щупалец гидры или расположение лепестков цветка. Предположив, что клетки имеют круглую форму, Тьюринг смоделировал многоклеточный зародыш — бластулу.
Бластула — один из этапов развития зародыша, на котором уже можно заметить появление узоров. Тьюринг изучил зародыши амфибий и ежей, которые сегодня благодаря своим особым свойствам широко используются в качестве моделей при изучении морфогенеза. Ученый предположил, что узоры образуются в результате процессов реакции — диффузии. Согласно его гипотезе, в зародышевой ткани, то есть в группе клеток, сгруппированных на плоскости, будут присутствовать пигментные клетки, продуцирующие вещество морфоген. Как только молекулы этого загадочного вещества распространятся в результате диффузии по зародышевой ткани, они вступают между собой в реакцию. Распределение продуктов этой химической реакции определяет так называемое поле концентраций — отпечаток, согласно которому и формируется узор зародышевых клеток. Следовательно, полоски, пятна и любые другие узоры, которые мы можем увидеть на шкуре животных, есть не более чем реплики поля концентраций. Мы не будем рассматривать знаменитые уравнения реакции — диффузии Тьюринга во всех подробностях, а только приведем их:
Эти выражения объясняют, как с течением времени изменяется объем или концентрация двух веществ, предложенных Тьюрингом, которые он назвал морфогеном-активатором ( М А ) и морфогеном-ингибитором ( М 1 ). Как мы уже отмечали, эти два вещества производятся только пигментными клетками. В свою очередь, f( М А, М 1 ) и g( М А, М 1 ) — две функции, обозначающие реакцию между активатором и ингибитором, а выражения
и указывают, как эти два класса морфогенов распространяются по ткани. Так, когда морфогены высвобождаются пигментными клетками, начинается процесс их диффузии, подобный диффузии песчинок сахара в стакане с водой. По Тьюрингу, морфоген-активатор стимулирует воспроизводство себя самого и морфогена-ингибитора. Еще одна любопытная особенность этой реакции заключается в том, что морфоген-ингибитор распространяется на большее расстояние, чем морфоген-активатор. Расстояния, на которые распространяются морфогены, зависят от D А и D 1 — коэффициентов диффузии морфогенов — активатора и ингибитора соответственно.
Читать дальше