Фон Берталанфи связал размер рыбы L( t ) с ее возрастом t ( L K — максимальный размер, L 0 — начальный размер, k — постоянная роста):
L( t ) = L K — ( L K— L 0 ) e -kt .
Теория эволюции
Эволюция — одна из важнейших тем биологии, которой уделяется большое внимание и в математической биологии с момента ее зарождения в 1930-е годы. В целом эволюция — это физиологические и другие изменения, претерпеваемые живыми существами с течением времени. По прошествии миллионов лет в результате этих изменений, а также изменений окружающей среды одни виды выживают, другие — вымирают.
Известно, что изменения живых существ вызваны определенными биологическими механизмами. Среди всех теорий, известных на сегодняшний день, наибольший успех имела теория естественного отбора Чарльза Дарвина, представленная им в 1859 году, в расцвет викторианской эпохи, в книге «Происхождение видов».
На этой фотографии Чарльз Дарвинизображен в возрасте 51 года, вскоре после публикации своего революционного труда «Происхождение видов».
Согласно теории Дарвина, живые существа, будь то растения, животные или микроорганизмы, представляют собой различные решения задачи адаптации к окружающей среде. Под окружающей средой понимаются различные условия существования, начиная от океанов или озер и заканчивая наземно-воздушной средой. При этом в каждой отдельно взятой среде наблюдается большое разнообразие живых существ: например, джунгли, дубовый лес или пустыня очень отличаются между собой. Согласно Дарвину, чем лучше «решение», которое представляет собой живой организм, точнее биологический вид, тем лучше он приспособлен. А чем выше приспособленность организма, тем больше его шансы на выживание и, следовательно, на достижение репродуктивного возраста. Репродукция, по Дарвину, является наградой: если организму удалось размножиться, гены счастливчика будут переданы следующему поколению.
Но как живые организмы находят новые решения в изменяющейся или неблагоприятной среде? Ответить на этот вопрос помогает генетика. За поиск новых решений отвечают механизмы, случайным образом меняющие генетический код, — мутации.
Чем выше изменение генов в определенных пределах, тем лучше для вида: его представители получают большой набор возможных «решений», который поможет им адаптироваться к будущим изменениям окружающей среды. По Дарвину, окружающая среда отбирает виды, наиболее пригодные для обитания в ней.
Развитие математических методов теории эволюции
В второй половине XIX века, после публикации книги Дарвина, в Великобритании возникла английская биометрическая школа, к которой принадлежали такие видные ученые, как Фрэнсис Гальтон и Карл Пирсон. Представители этой школы впервые применили в биологии методы статистики. Позднее, в 1930 году, Рональд Эйлмер Фишер, внесший огромный вклад в развитие биоматематики и биостатистики, сформулировал основную теорему естественного отбора, в которой дарвиновская теория эволюции путем естественного отбора объясняется на языке математики.
Согласно Фишеру, при определенных условиях и за определенное время t ритм или скорость, с которой повышается средняя приспособленность конкретного вида, равна разнообразию возможных значений генов. Обозначим средний рост приспособленности через ΔW¯ среднюю приспособленность — через W¯ множество возможных значений генов (генных вариаций) — через σ 2 w и получим обычную запись теоремы Фишера в математической биологии:
ΔW¯ = σ 2 w / W¯
Эта теорема — прекрасный пример того, сколь важную роль сыграла математика в последующем развитии биологии. Фишеру всего в одной формуле удалось точно выразить описанные выше идеи. В итоге биологические задачи начиная с 1930-х годов начали выражаться на языке математики, и развитие количественных методов биологии было уже не остановить. Еще одним важным событием для математической биологии стала модель, известная как модель «хищник — жертва» Лотки — Вольтерры (ее предложил Альфред Джеймс Лотка в 1925 году и Вито Вольтерра годом позже). Это одна из самых ярких математических моделей математической биологии и одна из самых популярных моделей в экологии. Мы подробнее расскажем о ней в главе 6.
Читать дальше