5. Задача Янга — Миллса. Поставлена как математическая задача и относится к изучению уравнений Янга — Миллса, крайне важных для объединения квантовой электродинамики с теорией электрослабого взаимодействия.
6. Задача Навье — Стокса. Изучение существования решения для основных уравнений движения вязких жидкостей.
7. Гипотеза Бёрча — Свиннертон-Дайера. Состоит в изучении того, бесконечным или конечным является множество рациональных решений для эллиптической кривой.
При этом он начал с вычисления нетривиальных нулей функции и на основе этих вычислений и глубокого понимания сути дзета-функции предположил, что действительная часть любого нетривиального нуля функции равна 1/2. Это утверждение известно как гипотеза Римана.
Риман сразу же понял, что его гипотеза может объяснить причину, по которой результат Гаусса с функцией Li(N) оказался таким точным. Позже было доказано, что гипотеза Римана эквивалентна первой гипотезе о простых числах Гаусса.
Перфекционизм, которым страдал Риман в период своего обучения, чуть не помешал ему записать свои открытия. Без сомнения, так сказывалось влияние Гаусса, который настаивал на том, что публиковать следует только идеальные доказательства, абсолютно лишенные пробелов. В ноябре 1859 года Риман опубликовал в ежемесячных заметках Берлинской академии эссе о своих открытиях. Этим десяти страницам плотных математических рассуждений было суждено быть единственными, которые Риман опубликовал по вопросу простых чисел, и несмотря на это они оказали значительное влияние на восприятие данных чисел в будущем. И все же, несмотря на блестящую интуицию Римана, эссе не было оценено. Вслед за своим учителем, Гауссом, Риман уничтожил все «леса». Главный тезис эссе состоял в том, что функция L.(N) Гаусса будет предоставлять каждый раз все лучшее приближение к функции π(Ν) по мере нашего продвижения в расчетах. Хотя Риман предложил инструмент доказательства гипотезы Гаусса, решение осталось вне досягаемости. Впрочем, Риман ввел форму, с помощью которой в будущем оказалось возможным подступиться к проблеме. Доказательство гипотезы Римана сразу же захватило математиков.
Если бы я проснулся, проспав тысячу лет, моим первым вопросом было бы: доказали ли уже гипотезу Римана?
Давид Гильберт, математик, предложивший в 1900 году знаменитый список ИЗ 23 НЕРЕШЕННЫХ ПРОБЛЕМ
В 1890 году по предложению Шарля Эрмита (1822-1901), одного из главных французских знатоков теории чисел, Парижская академия учредила премию — Grand Prix des Sciences Mathematiques — за доказательство первой гипотезы Гаусса о простых числах. Работу по этой теме представил ученик Эрмита, Жак-Саломон Адамар (1865-1963). Хотя он не предложил полного доказательства, его идей было достаточно для того, чтобы стать лауреатом премии. В 1896 году Адамару удалось заполнить лакуны своего первого доказательства, и ему не нужно было опираться на гипотезу Римана о том, что у нетривиальных нулей действительная часть равна одной второй. Адамару достаточно было доказать, что ни у одного нетривиального нуля нет действительной части, большей единицы, и он смог это сделать.
Спустя век после того, как Гаусс открыл связь между простыми числами и логарифмической функцией, наконец появилось доказательство гипотезы Гаусса о простых числах. Поскольку речь шла уже не о гипотезе, с этого момента она стала называться теоремой Гаусса о простых числах. Безусловно, Адамар не смог бы достичь успеха в своей работе без вклада Римана. Адамару пришлось разделить славу с бельгийским математиком Шарлем ла Валле Пуссеном (1866-1962), который в том же году нашел другое доказательство того же результата.
Следовательно, теперь оставалось только доказать или опровергнуть вторую гипотезу Гаусса о простых числах. Но если доказательство гипотезы Гаусса было подвигом, то попытка оспорить его догадку требовала уже поистине нечеловеческих усилий. Однако Джон Идензор Литлвуд (1885-1977), английский математик первой половины XX века, взялся за работу. Литлвуд был выдающимся учеником Годфри Харолда Харди (1877-1947), он получил известность благодаря работам по теории чисел, неравенств и теории функций. В 1912 году Литлвуд открыл, что гипотеза Гаусса — это мираж, что существуют области, где истинное количество простых чисел недооценено. Он осуществил доказательство с помощью математических рассуждений, поскольку нет способа наглядно аргументировать, что Гаусс ошибся. И на самом деле до сегодняшнего дня никому не удалось дойти до области чисел, в которой гипотеза Гаусса оказалась бы ложной. Несколькими годами позже, в 1933 году, студент Литлвуда по имени Стенли Скьюз (1899-1988) установил, что только когда обнаружатся простые числа порядка 10 101034, мы столкнемся с недооценкой количества простых чисел со стороны интегрального логарифма Гаусса. Но речь идет о настолько огромном числе, что мы должны проявить снисхождение к неточности, допущенной великим мастером.
Читать дальше