Антонио Лизана - Если бы числа могли говорить. Гаусс. Теория чисел

Здесь есть возможность читать онлайн «Антонио Лизана - Если бы числа могли говорить. Гаусс. Теория чисел» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2012, Издательство: ООО «Де Агостини»,, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Если бы числа могли говорить. Гаусс. Теория чисел: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Если бы числа могли говорить. Гаусс. Теория чисел»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

При жизни Карл Фридрих Гаусс получил титул короля математиков. Личность этого ученого можно сравнить с личностью другого его гениального современника и соотечественника — Вольфганга Амадея Моцарта. Оба были вундеркиндами, которым покровительствовали и помогали получить образование представители власти. Но в отличие от композитора, Гауссу повезло прожить долгую и спокойную жизнь. Он сделал много открытий в таких научных областях, как геометрия, астрономия, физика и статистика.
Прим. OCR: Знак "корень квадратный" заменен на SQRT(), врезки обозначены жирным шрифтом.

Если бы числа могли говорить. Гаусс. Теория чисел — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Если бы числа могли говорить. Гаусс. Теория чисел», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Раздел V — центральная часть книги. Он посвящен выражениям типа F = ах² + 2bху + су², где а,b,с — целые числа; эти выражения были названы Эйлером квадратичными формами. Существенная часть этого раздела не является оригинальной — в ней собраны и унифицированы результаты Лагранжа по этой теме.

Проблема, которую решает Гаусс, — это определение того, какие целые числа М могут быть представлены в виде выражения ах² + 2 bху + су² = М, где x и y — целые числа. Обратная, и более интересная, проблема, которую он также решил, заключается в том, чтобы при заданных М и а, b и с найти значения x и y, которые определяют значение М в квадратичной форме. Для этого Гауссу потребовалось классифицировать квадратичные формы и подойти к ним дифференцированно. С этой целью он использовал два базовых алгебраических свойства квадратичной формы. Гаусс установил классификацию квадратичных форм и их свойств на основе дискриминантов.

В этот раздел также включено доказательство теоремы, относящейся к треугольным числам, о которой мы уже говорили.

В разделе VI представлены многочисленные примеры применения понятий, разработанных в предыдущем разделе. Основные затрагиваемые вопросы — это разложение на простые дроби; то есть разложение дроби на сумму дробей со знаменателями, образованными от знаменателя исходной дроби. Эта техника имеет широкое применение в интегралах рациональных функций, то есть тех, которые могут быть представлены в виде частного многочленов. Также речь идет о периодических десятичных дробях и решении сравнений собственными методами Гаусса. Другая интересная тема — это поиск критериев, которые позволили бы выделять простые числа без трудоемких вычислений. Как мы увидим, изучение простых чисел сопровождало ученого всю его жизнь, но мы рассмотрим это отдельно.

ДИСКРИМИНАНТ МНОГОЧЛЕНА

В алгебре дискриминант многочлена — это некое выражение из коэффициентов данного многочлена, которое равно нулю тогда и только тогда, когда у многочлена множественные корни. Например, дискриминант квадратного многочлена ах² + bх + с равен b²-4ac, поскольку формула корня данного многочлена следующая:

то есть достаточно чтобы дискриминант в том виде в каком мы его определили - фото 22

то есть достаточно, чтобы дискриминант в том виде, в каком мы его определили, был равен нулю, чтобы получить единое двойное решение. В случае с многочленом х²-4х + 4, поскольку у него нулевой дискриминант, мы получаем один двойной корень (2), так что, применив основную теорему алгебры, получаем х²-4х + 4 = (х - 2)².

Раздел VII — самая известная часть «Исследований», оказавшая огромное влияние на развитие науки. В этом разделе шла речь о делении круга с помощью линейки и циркуля — классической теме математики. Очевидно, что эта задача связана с построением правильных многоугольников, так что Гаусс включил сюда свое знаменитое построение многоугольника с 17 сторонами, найдя достаточное условие для построения правильного многоугольника с помощью линейки и циркуля.

В мире математики все признают, что «Арифметические исследования» — это не просто сборник замечаний о числах. Работа знаменует собой рождение теории чисел как независимой дисциплины. Ее публикация сделала теорию чисел царицей математики — это определение очень нравилось Гауссу. И все же, несмотря на это, труд был не слишком тепло принят Парижской академией наук, которая сочла его темным и неясным. Одна из причин такого впечатления состоит в том, что Гаусс старался сохранять тайну, исключая или скрывая пути, которые привели его к открытиям. Как и следовало ожидать, математики не до конца поняли новую работу и назвали труд «книгой за семью печатями». Ее сложно читать даже специалистам, но содержащиеся в ней сокровища, включая скрытые в лаконичных синтетических доказательствах, сегодня доступны каждому, кто захочет восхититься ими, в основном благодаря работам Дирихле, который первым разбил эти семь печатей.

Рассказывают, что Дирихле использовал книгу Гаусса как подушку, чтобы ночью некоторые знания перетекли в его голову.

Лагранж также безоговорочно хвалил книгу. В своем письме Гауссу от 31 мая 1804 года он признается:

«Ваши «Исследования» быстро возвели Вас до уровня первых математиков, и я считаю, что последний раздел содержит самое красивое аналитическое открытие, которое только было сделано за последнее время [...]. Я думаю, что никто более искренне не аплодирует Вашим достижениям, чем я».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Если бы числа могли говорить. Гаусс. Теория чисел»

Представляем Вашему вниманию похожие книги на «Если бы числа могли говорить. Гаусс. Теория чисел» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Если бы числа могли говорить. Гаусс. Теория чисел»

Обсуждение, отзывы о книге «Если бы числа могли говорить. Гаусс. Теория чисел» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x