Josep Carrera - Трехмерный мир. Евклид. Геометрия

Здесь есть возможность читать онлайн «Josep Carrera - Трехмерный мир. Евклид. Геометрия» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2015, Издательство: ООО “Де Агостини”, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Трехмерный мир. Евклид. Геометрия: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Трехмерный мир. Евклид. Геометрия»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Евклид Александрийский — автор одного из самых популярных нехудожественных произведений в истории. Его главное сочинение — «Начала» — было переиздано тысячи раз, на протяжении веков по нему постигали азы математики и геометрии целые поколения ученых. Этот труд состоит из 13 книг и содержит самые важные геометрические и арифметические теории Древней Греции. Не меньшее значение, чем содержание, имеет и вид, в котором Евклид представил научное знание: из аксиом и определений он вывел 465 теорем, построив безупречную логическую структуру, остававшуюся нерушимой вплоть до начала XIX века, когда была создана неевклидова геометрия.

Трехмерный мир. Евклид. Геометрия — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Трехмерный мир. Евклид. Геометрия», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

«Способ получения всех этих чисел Эратосфен назвал решетом, потому что здесь сначала берутся нечетные числа, все вместе и без различий между ними, а затем этим производящим методом отделяются, как посредством решета, первичные числа от составных. Способ решета состоит в следующем. Начинают с тройки, а потом располагают в ряд все числа, кратные трем, пропуская два числа через каждые три и убирая третье. Потом переходят к первому оставшемуся числу, пятерке; пропускают четыре числа и убирают пятое; затем то же проделывают с семеркой, и так дальше, начиная всякий раз с первого неубранного числа».

СОВЕРШЕННЫЕ ЧИСЛА

Хотя Евклид и дал правильное определение простых чисел, а также теорему, чтобы породить совершенные числа, он не снабдил ее никаким примером. Соответствующее предложение может показаться неясным, возможно потому что оно представлено в описательной форме.

Книга IX, предложение 36. Если от единицы откладывается сколько угодно последовательно пропорциональных чисел в двойном отношении до тех пор, пока вся их сумма не станет первым числом, [...] то возникающее число будет совершенным.

Евклид имеет в виду следующее:

Если 1,2, 2 2, 2 3, ..., 2 nпоследовательно удваивать, то их сумма будет

S n=1 + 2 + 2 2+ 2 3+...+ 2 n= 2 n+1-1; если S n— простое число, то Р n= 2 nx S n= 2 nx(2 n+1-1) — совершенное число (четное).

Евклиду удалось получить этот результат, потому что в предложении 35 книги IX он уже дал формулу, необходимую для сложения чисел из последовательности 1, 2, 2 2, 2 3, ..., 2 n. Он также обратил внимание, что единственные рассмотренные делители Р, 1, 2, 2 2, 2 3,..., 2 nи S n, 2 х S n, 2 2х S n, 2 3x S n,..., 2 n-1x S n. Он сложил их и получил результат теоремы: сумму делителей 1, 2, 2 2, 2 3, ..., 2 n,

равную S n= 2 n + 1- 1, и сумму делителей S n, 2 x S ,2 2x S ,2 3x S ,..., 2 n-1x S и (2 n- 1) x S . Сумма двух результатов — Р n= S n+ (2n- 1) х S n= 2 nх S n= 2 nх (2 n + 1- 1). Ч. Т. Д.

Первые примеры

В «Арифметике» Никомах Герасский устанавливает, что совершенными числами являются 6,28,496 и 8126. Из этого он делает следующие выводы.

1. Совершенные числа (четные) оканчиваются на 6 и 8 (верно).

2.Они чередуются (неверно).

3.Существует одно совершенное число на каждый десятичный порядок — среди единиц, десятков, сотен, тысяч и так далее (неверно).

В XVIII веке Эйлер доказал теорему, взаимодополняющую теорему Евклида: каждое совершенное число (четное) имеет вид 2 nх (2 n+1-1), где 2 n+1-1 — простое число. На сегодняшний день все еще существуют нерешенные вопросы относительно совершенных чисел: неизвестно, бесконечен ли их ряд и существуют ли совершенные нечетные числа.

Начнем с последовательности нечетных чисел.

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69
71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103

Начиная с 3 уберем третьи числа через каждые два.

3 5 7 11 13 17 19 23 25 29 31 35
37 41 43 47 49 53 55 59 61 65 67
71 73 77 79 83 85 89 91 95 97 101 103

Начиная с 5 уберем пятые числа через каждые пять и получим следующее.

3 5 7 11 13 17 19 23 29 31
37 41 43 47 49 53 59 61 67
71 73 77 79 83 89 91 97 101 103

И так далее. Вот список простых чисел до тысячи.

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
53 59 61 67 71 73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173 179 181 191 193 197
199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367 373 379
383 389 397 401 409 419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541 547 557 563 569 571
577 587 593 599 601 607 613 617 619 631 641 643 647 653 659
661 673 677 683 691 701 709 719 727 733 739 743 751 757 761
769 773 787 797 809 811 821 823 827 829 839 853 857 859 863
877 881 883 887 907 911 919 929 937 941 947 953 967 971 977
983 991 997
ПИФАГОРОВА ТРОЙКА

Последняя задача, которую стоит разобрать, — это алгоритм получения пифагоровых троек — трех натуральных чисел, подтверждающих теорему Пифагора, например 3, 4, 5; 5, 12, 13 и так далее, то есть таких чисел a, b и с, при которых а 2+ b 2= с 2.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Трехмерный мир. Евклид. Геометрия»

Представляем Вашему вниманию похожие книги на «Трехмерный мир. Евклид. Геометрия» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Трехмерный мир. Евклид. Геометрия»

Обсуждение, отзывы о книге «Трехмерный мир. Евклид. Геометрия» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x