Алиса выбирает некоторое число a от 1 до p – 2 и определяет свою кодирующую функцию A как Ac = c a (mod p ).
Пользуясь базовой теорией чисел, можно сказать, что обратная (декодирующая) функция имеет вид
A –1 c = c a' (mod p )
для некоего числа a' , которое она может вычислить. Алиса держит и a , и a' в секрете.
Аналогично Боб выбирает себе число b и определяет свою кодирующую функцию B как Bc = c b (mod p ) и обратную к ней
B –1 c = c b' (mod p )
для числа b' , которое он может вычислить. Он держит b и b' в секрете.
Кодирующие функции A и B подчиняются коммуникативному закону, поскольку
ABc = A ( c b ) = ( c b ) a = c ba = c ab = ( c a ) b = B ( c a ) = BAc,
где все равенства выполняются (mod p ). Поэтому Алиса и Боб могут использовать A и B описанным образом.
Исключение невозможного 
Из мемуаров доктора Ватсапа
– Ватсап!
– А? Что? Вы это мне, Сомс?
– Сколько раз можно повторять, Ватсап, чтобы вы не приносили журнал The Strand в этот дом!
– Но… как…
– Вы знаете мои методы. Вы нетерпеливо постукивали пальцами, как делаете обычно, пока меня дожидаетесь. При этом вы то и дело поглядывали на свернутую газету, которая торчит у вас из кармана пальто. Газета эта слишком толста для Daily Reporter , хотя именно это название красуется у нее на первой полосе, так что в нее, наверное, завернут какой-то журнал. А поскольку вы по привычке прячете от меня лишь один журнал, сомневаться в его природе не приходится.
– Простите, Сомс, я просто надеялся получить кое-какие сравнительные данные о методах исследования из произведений коллеги… э-э… шарлатана из дома напротив.
– Тьфу! Этот человек – мошенник! Жулик, называющий себя детективом!
Откровенно говоря, временами Сомс бывает невыносим. Если подумать, он почти всегда такой.
– Бывали случаи, когда мне удавалось случайно выудить что-нибудь полезное из скучных творений моего нещадно эксплуатируемого коллеги, Сомс, – возразил я.
– Что, например? – агрессивно вопросил он.
– На меня сильное впечатление произвел такой его аргумент: «Если вы исключите невозможное, то, что останется, каким бы невероятным ни казалось, и будет…
– Ошибкой, – бесцеремонно закончил за меня Сомс. – Если то, что остается, по-настоящему невероятно, значит, вы почти наверняка приняли «по умолчанию» какое-то условие, когда объявляли все другие объяснения невозможными.
Последовательность никогда не значилась в числе добродетелей Сомса.
– Ну, может быть, но…
– Без всяких «но», Ватсап!
– Но ведь в других ситуациях вы соглашались…
– Тьфу! Реальность не бывает невероятной, Ватсап! Она может казаться таковой, но на самом деле ее вероятность составляет 100 %, потому что она уже случилась .
– Ну да, формально это так, но…
– Вот пример. Сегодня утром, когда вы, Ватсап, выходили купить эту лживую газетенку, я принял весьма неожиданного посетителя. Небезызвестного герцога Бамблфортского.
– Главный лондонский щеголь, – сказал я. – Благородный человек безукоризненной честности, образец для всех нас.
– Ну да, ну да. Тем не менее он проинформировал меня… Ну, он рассказал, что в Бамблфорт-холле был обед, на котором эрл Мондеринг, желая развлечь гостей, поставил в ряд десять винных стаканов и наполнил первые пять из них – вот так, – и Сомс продемонстрировал мне этот процесс наглядно, на наших собственных стаканах, наполнив их довольно кислой мадерой, от которой мы как раз решили избавиться. – Затем он предложил гостям переставить стаканы таким образом, чтобы полные чередовались с пустыми.
– Но это очень просто… – начал я.
– Если переставить четыре стакана, то да. Достаточно поменять второй с седьмым и четвертый с девятым. Вот так – (см. рисунок). – Однако эрл просил получить тот же результат, переставив всего два стакана.
Я сложил пальцы перед собой в жесте глубокого размышления и через мгновение нарисовал грубый набросок первоначального и конечного расположения стаканов.
– Но, Сомс! Четыре названных вами стакана должны оказаться в разных местах! Так что без четырех перестановок не обойтись!
Он кивнул.
– Итак, Ватсап, вы только что исключили невозможное.
Читать дальше
Конец ознакомительного отрывка
Купить книгу