Рафаель Роузен - Математика для гиков

Здесь есть возможность читать онлайн «Рафаель Роузен - Математика для гиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент АСТ, Жанр: Математика, sci_popular, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математика для гиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математика для гиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.
После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.

Математика для гиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математика для гиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Роторно-поршневой двигатель Ванкеля

Корпус, в котором находится роторно-поршневой двигатель Ванкеля – движущая сила некоторых автомобилей Mazda, имеет форму эпитрохоиды. Этот двигатель был создан Феликсом Ванкелем, немецким инженером, который получил свой первый патент за устройство в 1929 году. В отличие от поршневых двигателей, двигатель Ванкеля имеет лишь одну движущуюся часть: вращающаяся часть имеет форму треугольника со слегка закругленными краями.

414 Поиск внеземного разума берет свое начало в математике Математическое - фото 111

4.14. Поиск внеземного разума берет свое начало в математике

Математическое понятие: теория вероятности

В данный момент огромная группа телескопов к северу от Сан-Франциско находится в поисках признаков внеземных цивилизаций в небе. Названная в честь Пола Аллена, бывшего исполнительного директора Microsoft, который способствовал его изобретению, антенная решетка Аллена содержит 42 радиотелескопа, каждый из которых имеет диаметр 6,1 метра. (Существуют планы собрать 350 таких телескопов.) Телескопы использует SETI, организация в Маунтин-Вью в Калифорнии, которая занимается поиском внеземного разума. Когда все отдельные телескопы будут на месте, они будут покрывать территорию в 1 гектар, или 10 000 квадратных метров.

Помимо того что математика вовлечена в разработку таких больших приспособлений и в обработку всех сигналов, которые будут собирать антенные решетки Аллена, математика также внесла свой вклад в общую идею, стоящую за всем проектом. В 1961 году доктор Фрэнк Дрейк, один из основателей SETI, создал уравнение, которое охватывает все элементы, какие должны приниматься во внимание во время поиска внеземных цивилизаций, способных генерировать сигналы, которые мы можем обнаружить на Земле. Вот уравнение Дрейка:

N = R* f p n e f l f i f c L

Что касается элементов, вот их определения:

N – количество цивилизаций в Млечном Пути, генерирующих электромагнитное излучение, которое могут обнаружить люди;

R* – скорость формирования звезд, которые могут содержать разумную жизнь;

f p – доля этих звезд, которые имеют планетарные системы;

n e – количество планет вокруг каждой звезды, на которой есть жизнь;

f l – доля этих планет, на которых действительно есть жизнь;

f i – доля планет, на которых есть жизнь, на которой есть также разумная жизнь;

f c – доля цивилизаций, генерирующих сигналы, которые мы можем обнаружить;

L – длина времени, за которое эти цивилизации испускают эти сигналы в космос.

В этом случае использование языка математики помогает формулировать групповое мышление и прояснять параметры проекта.

Парадокс Ферми

Физик Энрико Ферми (1901–1954) интересовался внеземными цивилизациями, а также помог в развитии того, что сейчас известно как парадокс Ферми. Согласно вычислениям Ферми, внеземные существа должны были уже установить с нами контакт. А так как они этого не сделали, Ферми задал знаменитый вопрос: «Ну, и где они в таком случае?»

415 Цикады используют математику чтобы защитить свой вид Математическое - фото 112

4.15. Цикады используют математику, чтобы защитить свой вид?

Математическое понятие: простые числа

Есть ли что-нибудь интересное с математической точки зрения, скажем, в мире насекомых? Если это насекомое – периодическая цикада, то есть без сомнения. Это насекомое живет в лесах восточной части США и принадлежит к роду Magicicada, в который входит семь видов. Вы могли слышать их летом, когда они цепляются за стволы деревьев и ветки и жужжат, чтобы привлечь потенциальных партнеров.

Математически важным аспектом этих цикад является их необычный жизненный цикл. Большую часть жизни периодические цикады живут под землей, до достижения половозрелости, питаются ксилемой, жидкостью в деревьях, которая содержит питательные вещества. Но после определенного количества лет цикада выходит из почвы, сбрасывает свой экзоскелет и, как бабочка, превращается во взрослую особь с крыльями, которая готова к спариванию. Когда именно эти цикады выходят из-под земли, зависит от вида. Это знаменательное событие происходит каждые 13 или 17 лет. Но это не просто цифры: 13 и 17 являются простыми числами, которые делятся только на себя и на 1; другими примерами простых чисел являются 5 и 11 (см. главу 4.2).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математика для гиков»

Представляем Вашему вниманию похожие книги на «Математика для гиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математика для гиков»

Обсуждение, отзывы о книге «Математика для гиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x