Теперь давайте применим это мышление к группе из 23 человек. Каждое сравнение имеет 99,726027 % вероятность несовпадения. Не забывайте, что в нашей группе существуют 253 возможных сравнения, тогда общая вероятность того, что никакие два человека не родились в один день, составляет 99,726027 % × 99,726027 % × 99,726027 % × …, и так 253 раза. (Мы можем написать эти расчеты сокращенно, как 99,726027 253). Конечная вероятность равна 49,952 %. Если такова вероятность, что два человека не делят одну дату рождения, то вероятность того, что два человека родились в один день, составляет 50,048 %.
Поэтому в следующий раз, когда окажетесь в большой компании людей, спросите их даты рождения и посмотрите, что произойдет!
16 сентября
Согласно Мэтту Стайлсу, журналисту из National Public Radio, 16 сентября – самый популярный день рождения среди американцев в возрасте 14–40 лет. Он определил, что сентябрь и июль – наиболее распространенные месяцы рождения. Самым редким днем рождения стало 29 февраля, а потом 25 декабря.
3.21. Колокольный звон и математика
Математическое понятие: перестановка
При звоне колоколов на ум нам приходят религиозные службы, университетские городки, средневековые городские площади и, возможно, многолетняя рождественская реклама конфет Hershey’s Kisses. Но иногда звон колоколов имеет глубокую связь с математикой, особенно с перестановкой (расстановка определенного набора объектов, когда важен порядок каждого расположения).
Вид колокольного звона, который построен на математике, называется колокольным перезвоном, он требует командной деятельности, то есть в группе людей каждый отвечает за один конкретный колокол (количество колоколов обычно варьируется между 6 и 8, но может доходить и до 16). Такой звон колоколов вы могли слышать в фильмах после большой свадьбы или коронации короля. Обычно колокол с самым высоким звуком называется дискантом/малым колоколом, а с низким – большим колоколом. В любой группе малому колоколу присваивается номер 1, каждому последующему – следующая цифра. (Если всего 4 колокола, то большой колокол будет номером 4.)
В колокольном перезвоне в колокола звонят в определенном порядке так, чтобы ни один колокол не звонил дважды за один перезвон. С каждым перезвоном позиция одного колокола может меняться только на одну позицию. Так что звонари могут начать звонить в колокола в следующем порядке: 1, 2, 3, 4. Потом они могут звонить 2, 1, 4, 3, а потом 2, 4, 1, 3. Кроме того, каждый перезвон не должен повторяться. В конце звонарь возвращается к порядку 1, 2, 3, 4. Если вы живете в Северной Америке или хотите послушать колокольный перезвон своими ушами, зайдите на сайт североамериканской гильдии звонарей www.nagcr.org.
Карильон
Колокольный перезвон отличается от других видов колокольного звона, таких, как игра на карильоне, где музыкант сидит на стуле или скамье и нажимает на ряд рычагов, которые напоминают пианино. Самый большой карильон, состоящий из 77 колоколов, находится в пресвитерианской церкви Хиллз в Мичигане.
3.22. Байесовская статистика
Математическое понятие: байесовская вероятность
Если вы попросите студента назвать самый унылый, самый скучный, лишенный каких-либо компенсирующих качеств раздел математики, то он вполне может выбрать статистику. Одно лишь это слово вызывает в воображении образы калькуляторов и таблиц со сплошными числами. По крайней мере, такие образы вызывает стереотип.
А что, если я вам скажу, что статистика далеко не такая удручающая, как вы думаете?
Одним из способов убедить вас в этом будет рассказать о байесовской статистике, дисциплине, введенной Томасом Байесом, пресвитерианским священником, который жил в Англии в 1700-х. Тот вид статистики, с которым вы, возможно, знакомы, относится к частотной статистике. Если бы вы играли в блек-джек и вам бы выпали король и девятка, вы могли бы воспользоваться частотной статистикой и определить ваши шансы на блэк-джек при следующей раздаче карт.
Байесовская статистика, с другой стороны, постоянно пересматривает шансы по мере поступления новой информации. В случае игры в блек-джек вы не будете просто подсчитывать вероятность выпадения тройки или анализировать одни данные. Вы также будете держать в голове, какие карты уже сданы и мастерство дилера. С каждой новой информацией вероятность исхода игры пересматривается.
Однако байесовская статистика может намного больше, чем просто считать вероятность выигрыша в карточной игре. Она может спасать жизни. Например, ее использовали для нахождения Джона Олдриджа, рыбака, который упал со своего омароловного судна около побережья Лонг-Айленда в 2013 году. Его потеряли на обширной территории Атлантического океана, но когда береговая охрана приняла во внимание подводные течения в этом районе, а также путь, который прошел спасательный вертолет, им удалось сузить возможное местонахождение рыбака. Береговая охрана подсчитала примерное время падения Олдриджа с лодки, и компьютерная программа SAROPS проанализировала движение ветра и океанское течение, чтобы найти его наиболее вероятное местоположение в океане. Когда они, наконец, нашли его, он находился на плаву в течение 12 часов.
Читать дальше
Конец ознакомительного отрывка
Купить книгу