Как бы не относиться к такого рода новшествам, здесь результат уже налицо: основные темы содержания книги более компактно представлены в 6-ти пунктах раздела «Резюме» и 100 пунктах перечня Приложения IV, составленного из того, что для сегодняшней науки явно будет в новинку. Кроме того, с целью уплотнения основного содержания из него вынесены 172 комментариев, а также добавлены три отдельные миниатюры в виде приложений, которые обычно имеют справочный характер, но здесь они представлены как естественное продолжение основной части книги, без которых она была бы незавершённой.
Сюжет первой миниатюры очень интересен тем, что в доказательстве ОТА немецкого профессора Эрнста Цермело, (ученика аж самого Макса Планка!), от 1912 года имеет место столь малозаметная ошибка, что, узнав об этом, составители учебников будут крайне удивлены. Но не менее удивительно здесь и то, что эта ошибка, по сути, та же самая, что и в идее Герхарда Фрая в «доказательстве» ВТФ Вайлса 1995-го года, только ещё более завуалированная. Вот так, заблуждение, пришедшее в 1993-й год из 1912-го, обернулось просто ужасными последствиями, начисто уничтожившими «решения» сразу двух фундаментальных проблем, которые учёный мир так неосторожно позволил себе признать.
Вторая миниатюра не менее любопытна тем, что в ней подробно изложены два доказательства одного и того же частного случая ВТФ для n=4, сначала Леонарда Эйлера, а затем Пьера Ферма в реконструкции Башмаковой И.Г. Оба доказательства как братья-близнецы строятся на тождестве пифагорейцев и в обоих применён метод спуска. Различаются они только хитросплетениями логики вывода на один и тот же конечный результат. Эти хитросплетения, хотя и разные, но довольно сложны, что указывает на высочайшее мастерство их авторов. А вот финиш этой миниатюры просто потрясающий. Оказывается, это доказательство может быть получено из того же тождества пифагорейцев буквально в одну строчку (!!!), и эта самая строчка есть как раз в восстановленной нами записи ВТФ на полях книги, показанной на рис. 5.
В дополнение к изложенному здесь доказательству Эйлера частного случая ВТФ добавлен также полный текст всех доказательств Эйлера, относящихся к грандиозному открытию Ферма поистине изумительных свойств простых чисел типа 4n+1. Эта работа потребовала от Эйлера предельного напряжения всех его творческих и физических сил в течение семи лет, однако самое главное доказательство того, что эти числа всегда состоят из суммы двух единственных квадратов, изложено им так, что вряд ли кто-нибудь, кроме него самого, понимает его суть. Из письма Эйлера к Гольдбаху с этим доказательством сначала вообще никто ничего не понял, а после полученной Гольдбахом исправленной версии в другом письме все эксперты молчаливо признали его доказательство, хотя оно само далеко не очевидно, а о том, что числа этого типа должны быть сумма двух единственных квадратов, вообще нет ни единого слова.
Наконец, третья миниатюра – это путешествие в прошлое. Там-то будет немало всего удивительного и даже шокирующего, но здесь мы обратим внимание только на один момент – это особым образом изложенное никому не известное до сих пор доказательство Ферма его самого грандиозного открытия в области простых чисел, причём в изумительно красивой форме. Рассказ об этом устами его сына Клемана Самюэля с вишенкой на торте в виде эффектного уравнения произведут настолько же красочное впечатление, как от красоты естественной природы.
Избранный нами способ облачения в словесную форму содержания этой книги, хотя и требует от автора безмерного напряжения всех сил, всё-таки даёт результат, при котором совсем небольшой объём книги несёт в себе знания тысяч научных монографий! Не исключено, что такой прецедент будет первым и последним, и в этом смысле традиционным научным монографиям он не конкурент. Однако, по сути, это лишь следование простому совету классика выбирать стиль изложения, где словам было бы тесно, а мыслям просторно.
Обычным техническим языком такого эффекта не достичь, и для этого требуется высший уровень словесности, доступный лишь избранным, например, таким, как Александр Дюма-отец. В одной из своих книг Дюма утверждал даже, что писатели лучше понимают историю, чем историки. При этом он привирал так лихо и безбожно, что историкам оставалось только ухмыляться. Тем не менее, в итоге прав оказался Дюма, т.к. львиная доля истории, изложенной в толстых книгах, в реальности не происходила, а была просто придумана, и этому факту также нашлось место в этой книжке.
Читать дальше