Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Анализ аналогичного феномена в области инвестиций остается в качестве домашнего задания для читателей.

Глава восьмая

Доказательство от маловероятного

Самый неприятный философский вопрос в отношении проверки значимости нулевой гипотезы возникает уже в самом начале, еще до применения любого из тщательно продуманных алгоритмов, разработанных Фишером и усовершенствованных его последователями. Этот момент наступает в начале второго шага:

«Предположим, нулевая гипотеза истинна».

Однако в большинстве случаев мы пытаемся доказать обратное: что нулевая гипотеза не является истинной. Лекарственный препарат работает, Шекспир использует аллитерации, в Торе заложено все будущее. С логической точки зрения, кажется сомнительным исходить именно из того предположения, которое мы стремимся опровергнуть, – создается впечатление, будто мы рискуем создать замкнутый круг в доказательстве.

На этот счет можете быть спокойны. Выдвигать предположение об истинности того, что мы втайне считаем ложным, – это проверенный временем метод аргументации, восходящий еще к Аристотелю. Речь идет о доказательстве от противного, reductio ad absurdum. Подобное доказательство – своего рода математическое дзюдо, в ходе которого мы сначала утверждаем, что в конечном счете хотим опровергнуть, планируя перебросить его через плечо и победить посредством его же собственной силы. Если гипотеза приводит к ложным выводам [124], тогда и сама гипотеза должна быть ошибочной. Следовательно, план действий сводится к следующему:

• предположим, гипотеза Н истинна;

• из гипотезы Н вытекает, что определенный факт F не может иметь место;

• однако факт F имеет место;

• следовательно, гипотеза Н ошибочна.

Предположим, кто-то скажет вам, что во время массовой стрельбы в округе Колумбия погибло двести детей. Это гипотеза. Однако проверить такую гипотезу может быть достаточно трудно (я имею в виду, что, если ввести в поисковик Google фразу «количество детей, погибших от огнестрельного оружия в округе Колумбия в 2012 году», прямой ответ получить не удастся). С другой стороны, если мы предположим, что эта гипотеза истинна, тогда в округе Колумбия в 2012 году не могло быть меньше двухсот случаев насильственной смерти. Однако на самом деле таких случаев было меньше – всего восемьдесят восемь {114}. Следовательно, гипотеза человека, сообщившего вам об этом, должна быть ошибочной. Здесь нет никакого замкнутого круга в доказательстве: мы приняли ошибочную гипотезу в качестве предварительного, пробного предположения, тем самым создали противоречащий фактам воображаемый мир, в котором истинна данная гипотеза Н , а затем наблюдали за тем, как этот мир разваливается под натиском реальности.

В такой формулировке метод доказательства от противного кажется почти элементарным, и в каком-то смысле так оно и есть, но, наверное, было бы правильнее сказать, что это инструмент мышления, к использованию которого мы слишком привыкли и часто забываем, насколько он эффективен. В действительности именно простой метод от противного лежит в основе сформулированного Пифагором доказательства иррациональности квадратного корня из двух – доказательства, которое оказывало настолько разрушительное воздействие на существовавшую в то время систему понятий и воззрений, что его автора пришлось убить. Это настолько простое, изящное и компактное доказательство, что я могу записать его на паре страниц.

Предположим, гипотеза Н состоит в следующем:

Н – квадратный корень из двух есть рациональное число.

Другими словами, мы предположили, что √2 – это число, представленное в виде дроби m / n , где m и n – целые числа. Эту дробь можно привести к несократимому виду: если у числителя и знаменателя есть общий делитель, их можно сократить, сохранив дробь неизменной: нет смысла писать 10/14 вместо более простой дроби 5/7. Давайте перефразируем нашу гипотезу:

Н : квадратный корень из 2 равен m / n , где m и n – целые числа, не имеющие ни одного общего делителя.

В действительности это означает, что оба числа m и n не могут быть четными. Если предположить, что оба числа четные, это равносильно тому, чтобы сказать, что у них общий делитель 2. В таком случае, как и в случае дроби 10/14, можно было бы сократить числитель и знаменатель на 2, не изменив саму дробь, а значит, у нас была бы дробь, не приведенная к простейшему виду. Следовательно, утверждение

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x