Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

F: m и n есть четные числа

ложное.

Поскольку √2 = m / n , после возведения обеих частей этого уравнения в квадрат мы увидим, что 2 = m ²/ n ², или, что то же самое, 2 n ² = m ². Следовательно, m ² – это четное число, а это значит, что само число m также четное. Число является четным, если его можно представить в виде произведения числа 2 на другое целое число, а значит, мы можем записать число m в виде 2 k , где k – целое число. Это означает, что 2 n ² = (2 k )² = 4 k ². Сократив обе стороны на 2, мы получим n ² = 2 k ².

В чем смысл всех этих алгебраических преобразований? Просто показать, что n ² равно двум k ², а значит, это число четное. Но если n ² четное число, тогда и само n должно быть четным, так же как и m . Но это означает, что утверждение F истинно. Выдвинув гипотезу H , мы пришли к ошибочному и даже абсурдному выводу, что утверждение F истинно и ложно одновременно. Следовательно, гипотеза H должна быть ошибочной. Квадратный корень из 2 – это не рациональное число. Предположив, что оно является таковым, мы доказали, что это не так. На самом деле довольно странный прием, но он работает.

Проверку значимости нулевой гипотезы можно представить как несколько размытую версию доказательства от противного:

• предположим, нулевая гипотеза Н истинна;

• из гипотезы Н вытекает, что некий результат О очень маловероятен (скажем, не превышает порог Фишера 0,05);

• однако результат О был установлен посредством наблюдений;

• следовательно, вероятность Н крайне мала.

Другими словами, мы имеем здесь не доказательство от противного, а доказательство от маловероятного.

Классический пример такого доказательства привел астроном и священник XVIII столетия Джон Митчелл, который одним из первых использовал статистический подход к изучению небесных тел {115}. За скоплением тусклых звезд в одном углу созвездия Тельца наблюдала едва ли не каждая цивилизация. В племени навахо это скопление называют Dilyehe, «Сверкающая фигура», в племени маори – Matariki, «Глаз Бога». Для древних римлян это была гроздь винограда, у японцев это Subaru (если вдруг вам интересно, почему на логотипе компании изображено шесть звезд). Мы называем это звездное скопление Плеядами.

Столетия наблюдений и мифотворчества не смогли ответить на фундаментальный научный вопрос: действительно ли это звездное скопление является скоплением? Или эти шесть звезд разделены недоступными пониманию расстояниями и просто случайно расположены почти в одним и том же направлении от Земли? Точки света, в случайном порядке размещенные в нашем поле зрения, выглядят примерно так {116}:

Вы видите здесь несколько групп не так ли Этого следовало ожидать неизбежно - фото 46

Вы видите здесь несколько групп, не так ли? Этого следовало ожидать: неизбежно формируются группы звезд, как будто почти взгромоздившихся друг на друга по воле случая. Как можно быть уверенными в том, что это не происходит с Плеядами? Это тот же феномен, на который обратили внимание Гилович, Валлон и Тверски: разыгрывающий игрок, который отличается высоким постоянством игры без взлетов и падений, время от времени все же делает по пять результативных бросков подряд.

На самом деле, если не было бы больших видимых скоплений звезд (как на представленном ниже рисунке), это само по себе свидетельствовало бы о том, что здесь действует некий неслучайный процесс. Второй рисунок может показаться невооруженному глазу более хаотичным, но на самом деле это не так: он показывает, что этим точкам присуща склонность избегать образования скоплений.

Следовательно сам феномен существования наблюдаемых скоплений не должен - фото 47

Следовательно, сам феномен существования наблюдаемых скоплений не должен убеждать нас в том, что рассматриваемые звезды действительно образуют группу в пространстве. С другой стороны, группа звезд на небе может быть настолько плотной, что отвергаются любые сомнения в случайности этого феномена. Митчелл показал, что, если видимые звезды были бы разбросаны в пространстве в случайном порядке, вероятность того, что шесть звезд образуют подобное Плеядам звездное скопление, предстающее перед нашим взором, крайне мала: около одного шанса на 500 тысяч, по расчетам самого Митчелла. Но вот они над нами – звезды, образующие гроздь винограда. Митчелл пришел к следующему умозаключению: только глупец может считать, что это произошло по воле случая.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x