Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

54

Более подробную информацию об этих исследованиях можно найти в статье, опубликованной в Journal of Stuff I Totally Made Up in Order to Illustrate My Point («Журнал, придуманный мною для освещения собственной точки зрения»).

55

В данном контексте «максимальная приближенность» определяется следующим образом. Если вы замените фактическую плату за обучение в каждом университете оценкой, которую подразумевает прямая, а затем вычислите разность между расчетной и фактической платой за обучение, после чего возведете каждое из этих чисел в квадрат и сложите все эти квадраты, то получите общий показатель того, насколько прямая не проходит по точкам. Надо выбрать прямую, у которой этот показатель минимален. Такое суммирование квадратов напоминает о Пифагоре; в действительности геометрия, лежащая в основе линейной регрессии, – не что иное, как теорема Пифагора, преобразованная и доработанная для решения задач с гораздо большей размерностью. Однако эта история требует больше алгебраических выкладок, чем я хотел бы здесь приводить. Более подробное описание соответствующих аспектов корреляции и тригонометрии можно найти в главе 15.

56

Марк Твен . Жизнь на Миссисипи / Пер. Р. Райт-Ковалевой // Марк Твен. Собрание сочинений в 12 томах. М.: Художественная литература, 1960. Т. 4. С. 351–352. Прим. ред.

57

Эти требования вызывают в памяти сюжет рассказа Орсона Скотта Карда Unaccompanied Sonata («Соната без сопровождения»). В нем идет речь о сверходаренном музыканте, которого держат в одиночестве, в строгой изоляции от всей существующей в мире музыки, с тем чтобы это не лишило оригинальности его собственную музыку. Но затем один человек пробирается к нему и дает запись с музыкой Баха. Разумеется, блюстители порядка узнают об этом и навсегда запрещают необыкновенному музыканту заниматься музыкой. Кажется, в дальнейшем ему отрежут пальцы, или лишат зрения, или сделают что-то еще, поскольку Орсон Скотт Кард имеет странную склонность к жестокому наказанию своих персонажей и расчленению их живой плоти. Как бы там ни было, смысл всей этой истории сводится к следующему: Бах слишком велик, чтобы пытаться удерживать молодых музыкантов от приобщения к его музыке. [См.: О. С. Кард . Соната без сопровождения / Пер. В. Постникова // О. С. Кард. Карты в зеркале. М.; СПб.: ЭКСМО; Домино, 2005. С. 417–439. Прим. ред. ]

58

Строка из поэмы Paterson («Патерсон») Уильяма Карлоса Уильямса. Прим. М. Г.

59

Планиметрия – раздел евклидовой геометрии, изучающий двумерные (одноплоскостные) фигуры, то есть фигуры, которые можно расположить в пределах одной плоскости. Прим. ред.

60

Масса тела в килограммах, поделенная на квадрат роста в метрах. Прим. М. Г.

61

В научной литературе термин «избыточный вес» используется в случаях, когда «ИМТ составляет минимум 25, но менее 30», а термин «ожирение» – когда «ИМТ составляет 30 и более». Однако я предпочту обозначать обе категории одним термином «избыточный вес», чтобы не повторять множество раз фразу: «избыточный вес или ожирение».

62

А примерно к 2120 году – 146 %. Прим. М. Г.

63

На мадридском вокзале Аточа 11 марта 2004 года в результате серии взрывов, произведенных исламистской ячейкой, погибли 191 человек и около 2000 людей были ранены. Прим. М. Г.

64

Я не собираюсь приводить здесь соответствующие расчеты, но, если вы захотите проверить мой результат, ключевым термином в данном случае будет «биномиальное распределение».

65

Рашмор – гора в Южной Дакоте, в которой высечены портреты президентов США Джорджа Вашингтона, Томаса Джефферсона, Теодора Рузвельта и Авраама Линкольна. Wall Drug – знаменитый торговый центр, туристическая достопримечательность города Уолл в Южной Дакоте. Прим. М. Г.

66

НБА , Национальная баскетбольная ассоциация (National Basketball Association, NBA) – мужская профессиональная баскетбольная лига Северной Америки. Прим. М. Г.

67

Knicks – баскетбольный клуб New York Knickerbockers («Нью-Йорк Никербокерс»), более известный как New York Knicks («Нью-Йорк Никс») или просто «Никс». Прим. М. Г.

68

И да, когда вы бросаете мяч в корзину, процент попаданий не в меньшей степени зависит от ваших врожденных данных. Крупный игрок, делающий броски в корзину из-под кольца или сверху в прыжке, с самого начала имеет серьезное преимущество. Но это не имеет прямого отношения к той идее, которую мы здесь рассматриваем.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x