Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Геометрия высших измерений может показаться недоступной для понимания, особенно учитывая, что мир, в котором мы живем, трехмерный (или четырехмерный, если учитывать время, или, может, двадцатишестимерный, если вы относитесь к числу специалистов по теории струн, но даже в таком случае Вселенная не выходит далеко за пределы этих измерений). Зачем же изучать геометрию, которая не реализована во Вселенной?

Один ответ связан с изучением данных, которые получили в наше время очень широкое распространение. Вспомните цифровую фотографию, сделанную четырехмегапиксельной фотокамерой: ее описание состоит из четырех миллионов чисел, по одному на каждый пиксел. (И это еще без учета цвета!) Следовательно, такое изображение представляет собой вектор с размерностью четыре миллиона, или, если угодно, точку в пространстве четырех миллионов измерений. А изображение, которое меняется со временем, представлено точкой, которая перемещается в пространстве с размерностью четыре миллиона, которая вычерчивает линию в пространстве с размерностью четыре миллиона, и вы не успеете опомниться, как уже будете выполнять исчисление в пространстве с размерностью четыре миллиона, после чего может начаться настоящее веселье.

Но вернемся к температуре. В нашей таблице два столбца чисел, каждый можно представить в виде десятимерного вектора. Вот как выглядят эти векторы.

Векторы указывают примерно в одном и том же направлении а это говорит о том - фото 108

Векторы указывают примерно в одном и том же направлении, а это говорит о том, что два столбца чисел не так уж отличаются друг от друга: как мы уже видели, города с самой низкой температурой в 2011 году остались такими же холодными в 2012 году, и то же самое можно сказать о самых теплых городах.

Это и есть формула Пирсона, представленная на языке геометрии. Корреляцию между этими двумя переменными определяет угол между двумя векторами. Если хотите представить это в тригонометрической форме, корреляция – это косинус угла между векторами. Не важно, помните ли вы, что такое косинус; вам нужно знать только то, что косинус угла равен 1, если угол равен 0 (то есть когда векторы указывают в одном направлении), и −1, если угол равен 180 градусам (векторы указывают в противоположных направлениях). Между двумя переменными имеет место положительная корреляция, когда соответствующие векторы образуют острый угол (то есть угол менее 90 градусов), и отрицательная корреляция в случае тупого угла (когда угол между векторами больше 90 градусов). Это имеет смысл: векторы, расположенные под острым углом друг к другу, в каком-то смысле указывают в одном направлении, тогда как векторы, которые образуют тупой угол, как будто преследуют разные цели.

Когда угол между векторами является прямым, то есть не острым и не тупым, корреляция между двумя переменными равна нулю, другими словами эти переменные не связаны друг с другом, во всяком случае с точки зрения, корреляции. В геометрии пара векторов, образующих прямой угол, называются перпендикулярными, или ортогональными. Само собой разумеется, среди математиков и других приверженцев тригонометрии принято использовать слово «ортогональный» для обозначения того, что не связано с рассматриваемым вопросом: «Вы можете предположить, что математические способности связаны с огромной популярностью, но, судя по моему опыту, эти два качества ортогональны». Такое употребление слова постепенно переходит из жаргона гиков в общеупотребительный язык. Посмотрите хотя бы, что произошло во время недавних прений сторон в Верховном суде США {229}.

Мистер Фридман. Думаю, этот вопрос полностью ортогонален рассматриваемому здесь вопросу, поскольку Содружество признает…

Председатель суда Робертс. Прошу прощения. Полностью что?

Мистер Фридман. Ортогонален. Прямой угол. Не имеющий отношения. Не относящийся к делу.

Председатель суда Робертс. Ах да.

Судья Скалиа. Что это за прилагательное? Мне оно понравилось.

Мистер Фридман. Ортогональный.

Судья Скалиа. Ортогональный?

Мистер Фридман. Да, верно.

Судья Скалиа. Ох!

( Смех в зале. )

Я не против того, чтобы прижилось такое употребление слова ортогональный . Математические термины уже давно используются в повседневном языке. Выражение «наименьший общий знаменатель» почти утратило свой первоначальный математический смысл, я уже не говорю о слове экспоненциально [275].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x