Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Эллипс здесь налицо причем очень вытянутый а это значит что существует - фото 96

Эллипс здесь налицо, причем очень вытянутый, а это значит, что существует высокая степень корреляции между долей избирателей, проголосовавших за Керри, и долей избирателей, проголосовавших за Обаму. Очевидно, что б о льшая часть графика расположена над диагональю; это говорит о том, что в целом Обама получил больше голосов, чем Керри.

На следующем графике представлены данные о ежедневных изменениях курсов акций Google и General Electric (GE) за несколько лет.

Следующим будет рисунок который мы уже видели график взаимозависимости - фото 97

Следующим будет рисунок, который мы уже видели, – график взаимозависимости между стоимостью обучения в нескольких университетах штата Северная Каролина и средним баллом SAT.

Далее представлены 50 штатов США расположенные на диаграмме разброса по - фото 98

Далее представлены 50 штатов США, расположенные на диаграмме разброса по среднему доходу и доле избирателей, проголосовавших за Джорджа Буша во время президентских выборов 2004 года {223}. На этой диаграмме богатые либеральные штаты, такие как Коннектикут, расположены в нижней правой части диаграммы, а поддерживающие республиканцев штаты с более скромными доходами, такие как Айдахо, – в верхней левой части.

Эти данные взяты из самых разных источников однако все четыре диаграммы - фото 99

Эти данные взяты из самых разных источников, однако все четыре диаграммы разброса имеют примерно такую же эллиптическую форму, что и диаграмма роста родителей и детей. В первых трех случаях имеет место положительная корреляция: увеличение одной переменной связано с увеличением другой; при этом эллипс вытянут с северо-востока на юго-запад. На последнем графике отображена отрицательная корреляция: в целом более богатые штаты больше поддерживают демократов, а эллипс вытянут с северо-запада на юго-восток.

Чрезмерная эффективность классической геометрии

Аполлоний и древнегреческие геометры представляли себе эллипсы как конические сечения – поверхности, полученные пересечением конуса плоскостью. Кеплер показал (хотя астрономическому сообществу понадобилось несколько десятилетий, чтобы понять это), что планеты движутся по эллиптическим орбитам, а не по круговым, как считалось ранее. Теперь та же кривая возникает в качестве естественной фигуры, к которой заключены данные о росте родителей и детей. Чем это можно объяснить? Причина не в том, что существует некий невидимый конус, управляющий наследственностью, который в случае отсечения под правильным углом дает эллипсы Гальтона. Причина также не в том, что некая форма генетического притяжения приводит к появлению эллиптических фигур на диаграммах Гальтона посредством ньютоновских законов механики.

Причина заключается в одном фундаментальном свойстве математики – в каком-то смысле именно это свойство сделало математику столь полезной для естествоиспытателей. В математике существует множество сложных объектов, но совсем немного простых. Следовательно, если у вас есть задача, решение которой допускает простое математическое описание, значит, существует только несколько вариантов такого решения . Таким образом, самые простые математические объекты широко распространены и выполняют множество обязанностей в качестве решений научных задач разных типов.

Самые простые линии – прямые. Очевидно, что прямые линии присутствуют в природе повсюду, от граней кристаллов до траектории движущихся тел при отсутствии силы, которая на них воздействует. Следующий тип простейших линий – линии, представленные квадратными уравнениями [263], то есть уравнениями, в которых друг на друга умножаются не более двух переменных. Таким образом, возведение переменной в квадрат, или умножение двух разных переменных, разрешено, тогда как возведение переменной в куб, или умножение одной переменной на квадрат другой, строго запрещено. Линии этой категории, в том числе эллипсы, из уважения к истории называют коническими сечениями, однако более прогрессивные специалисты по алгебраической геометрии называют их квадриками [264], или кривыми второго порядка . Существует множество квадратных уравнений, причем любое из них имеет такой вид:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x