Дмитрий Елисеев - Рассказы о математике с примерами на языках Python и C

Здесь есть возможность читать онлайн «Дмитрий Елисеев - Рассказы о математике с примерами на языках Python и C» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Математика, Программирование, Программы, Базы данных, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Рассказы о математике с примерами на языках Python и C: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Рассказы о математике с примерами на языках Python и C»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Вниманию читателей представляется книга «Рассказы о математике с примерами на языках Python и C». В книге описаны различные истории или задачи, прямо или косвенно связанные с математикой (магические квадраты, простые числа и пр). Кратко рассмотрены более сложные моменты, например выполнение вычислений с помощью GPU.
Книга распространяется бесплатно, скачать оригинал в PDF можно на странице
.

Рассказы о математике с примерами на языках Python и C — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Рассказы о математике с примерами на языках Python и C», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рассказы о математике с примерами на языках Python и C - изображение 28

3) Квадраты периодов обращений планеты пропорциональны кубу расстояний до орбиты:

Рассказы о математике с примерами на языках Python и C - изображение 29

Кеплер считал, что весь мир подчиняется гармонии, и что солнечная система больше похожа на часовой механизм, чем на божественное творение. Найденные им законы не только красивы и гармоничны, но и совпали с реальными наблюдениями (уже позже выяснилось, что законы Кеплера могут быть выведены из законов Ньютона и закона всемирного тяготения, желающие могут найти доказательства в Википедии).

Что касается Марса, то его орбита более вытянутая, чем орбита Земли, чем и объясняется разница как в скорости движения, так и в яркости планеты. Картинка с сайта журнала «Наука и жизнь»:

Кстати эта картинка хорошо объясняет почему только некоторые годы - фото 30

Кстати, эта картинка хорошо объясняет, почему только некоторые годы благоприятны для запуска космических кораблей к Марсу — те годы, в которые расстояние между планетами минимально.

12. Парадоксы теории вероятности

На интуитивном уровне понимание теории вероятности довольно-таки просто. Возьмем кубик с 6 гранями, подбросим и посмотрим какая грань выпала. Интуитивно ясно, что вероятность выпадения 1 грани из 6 будет 1/6. Действительно, вероятностью называют отношение числа равновероятных событий к числу всех возможных вариантов:

Рассказы о математике с примерами на языках Python и C - изображение 31

Какова вероятность что выпадут 2 цифры подряд? Она равна произведению вероятностей: (1/6) * (1/6) = 1/36.

Вроде все просто, однако несмотря на простоту, есть довольно-таки много задач, где математика не всегда совпадает с бытовым «здравым смыслом». Рассмотрим несколько таких парадоксов.

Дети мистера Смита

Эту задачу описывал Мартин Гарднер. Известно что у мистера Смита двое детей, и один из них мальчик. Какова вероятность, что второй из них тоже мальчик? Интуитивно кажется, что вероятность пола ребенка всегда равна 1/2, но не все так просто.

Рассмотрим возможные варианты семей с двумя детьми:

‐ мальчик-мальчик

‐ мальчик-девочка

‐ девочка-мальчик

‐ девочка-девочка

Исходя из списка вариантов, ответ понятен. Вариант «девочка-девочка» по условию не подходит. Всего остается 3 варианта семей где есть мальчик (М + М, М + Д, Д + М), значит вероятность что второй ребенок окажется мальчиком, равна 1/3.

Бросание кубика

Вернемся к бросанию кубика. Допустим, мы бросили кубик 5 раз, и все разы выпала цифра «3». Какова вероятность, что мы бросим кубик еще раз, и выпадет снова цифра «3»?

Ответ прост. Интуитивно кажется, что вероятность такого события очень мала. Но в реальности кубик не имеет какой-либо встроенной «памяти» на предыдущие события. Какие бы числа не выпадали до текущего момента, вероятность нового числа также равна 1/6 (а вот если говорить о вероятности выпадения такой серии «в целом», то она действительно равна 1/(6 * 6 * 6 * 6 * 6 * 6) = 1/46656.

Кстати, такая вероятность это много или мало? Интуитивно кажется что мало, и в принципе оно так и есть. Одному человеку пришлось бы бросать кубик каждые 10 секунд 4 дня, чтобы дождаться выпадения 6 цифр подряд. Однако если рассматривать большие числа, то такие вероятности становятся неожиданно большими. Например, если 6 раз кубик бросят все 5 миллионов жителей Петербурга, то 6 цифр подряд выпадут примерно у 100 человек — довольно-таки значительное количество. Это на самом деле важный момент: даже довольно-таки маловероятные события гарантированно произойдут, если речь идет о большом числе попыток. Это важно при прогнозировании таких событий как ДТП, аварии, катастрофы, и прочие негативные явления, которые в большом городе увы, не редкость. По этой же причине редкие заболевания эффективнее лечить в большом городе — редкая болезнь, встречающаяся 1 раз на 100000 человек, может практически не встречаться в небольшом городе и у врачей не будет опыта борьбы с ней, а в мегаполисе таких больных наберется в несколько раз больше.

Парадокс Монти Холла

Этот известный парадокс хорошо описан в Википедии.

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, открывает одну из оставшихся дверей, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Рассказы о математике с примерами на языках Python и C»

Представляем Вашему вниманию похожие книги на «Рассказы о математике с примерами на языках Python и C» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Рассказы о математике с примерами на языках Python и C»

Обсуждение, отзывы о книге «Рассказы о математике с примерами на языках Python и C» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x