Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]

Здесь есть возможность читать онлайн «Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент МИФ без БК, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Бесконечная сила [Как математический анализ раскрывает тайны вселенной]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам.
Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика.
На русском языке публикуется впервые.

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Я хочу сказать, что вычисление Архимедом числа π было героическим подвигом – и с логической, и с арифметической точки зрения. В итоге, использовав 96-угольник, вписанный в круг, и 96-угольник, описанный около круга, он доказал, что число π больше, чем 3 + 10/71, и меньше, чем 3 + 10/70.

Забудьте на минуту о математике. Просто насладитесь этим результатом на визуальном уровне:

Бесконечная сила Как математический анализ раскрывает тайны вселенной - изображение 20

Неизвестное и вечно непостижимое число π оказалось зажато в тиски между двумя почти одинаковыми числами, отличающимися только знаменателями 70 и 71. Одно из полученных граничных значений – число 3 + 10/70 = 22/7 – стало знаменитым приближением для π, знакомым всем школьникам; к сожалению, многие ошибочно считают его самим числом π.

Метод, который использовал Архимед (он основывается на более ранних работах греческого математика Евдокса), сегодня известен как метод исчерпывания, когда неизвестное число π оказывается зажатым между двумя известными числами. С каждым удвоением границы сближаются, оставляя числу π все меньше места.

Окружности – это простейшие кривые в геометрии. Тем удивительнее, что определение их количественных характеристик выходит за ее рамки. Например, вы не найдете упоминания о числе π в «Началах» Евклида, написанных за одно-два поколения до Архимеда. Вы найдете там доказательство (методом исчерпывания), что отношение площади круга к квадрату его радиуса одинаково для всех кругов, но ни малейшего намека на то, что это универсальное число близко к 3,14. Такое упущение Евклида было сигналом, что тут нужно что-то более глубокое. Чтобы разобраться с числовым значением π, потребовалась новая математика, которая бы могла работать с криволинейными формами. Как измерить длину кривой, площадь криволинейной фигуры или объем криволинейного тела? Эти актуальные вопросы увлекли Архимеда и позволили сделать первые шаги по направлению к тому, что мы сейчас именуем интегральным исчислением. Число π было его первым триумфом.

Дао числа π

Современным умам может показаться странным, что число π не появляется в формуле Архимеда для площади круга, A = rC / 2 и что он никогда не записывал уравнения типа C = π d для выражения длины окружности через диаметр. Он избегал это делать, поскольку π не было для него числом. Это было просто отношение двух длин, длины окружности и ее диаметра. Это была какая-то величина, а не число.

Сегодня мы не проводим различия между величиной и числом, но в древнегреческой математике оно было важным. По-видимому, оно возникло из-за напряженности между дискретным (представляемым целыми числами) и непрерывным (представляемым формами). Исторические подробности неясны, но, похоже, что где-то между Пифагором и Евдоксом, между VI и IV веками до нашей эры, кто-то доказал, что диагональ квадрата несоизмерима с его стороной [54], то есть отношение этих двух длин нельзя выразить как отношение двух целых чисел. Говоря современным языком, этот кто-то обнаружил существование иррациональных чисел [55]. Есть подозрение, что это открытие потрясло и разочаровало греков, поскольку противоречило убеждениям пифагорейцев. Если целые числа и их отношения не могут измерить даже такую несложную вещь, как диагональ квадрата, то утверждение «все есть число» оказывалось ложным. Столь обескураживающее разочарование может объяснить, почему поздние греческие математики всегда ставили геометрию выше арифметики. Числам больше нельзя было доверять. Они не годились для фундамента математики.

Древнегреческие математики поняли, что, для того чтобы описывать непрерывные величины и рассуждать о них, им нужно нечто более мощное, чем целые числа. Поэтому они разработали систему, основанную на формах и их отношениях. Она опиралась на измерение геометрических объектов – длины отрезков, площади квадратов, объемы кубов. Все это греки называли величинами. Они считали их отличными от чисел и превосходящими их.

Думаю, именно поэтому у Архимеда не было тесных отношений с числом π. Он не знал, что с ним делать. Это было странное сверхъестественное творение, куда более экзотичное, нежели любое число.

Сегодня мы считаем π числом – действительным числом, для записи которого требуется бесконечное количество знаков после запятой, – причем числом захватывающе интересным. Моих детей оно просто заинтриговало. Они часто смотрели на тарелку, висящую на стене нашей кухни, на которой цифры числа π бежали по ободку, а затем сходились по спирали к центру, уменьшаясь в размерах по мере того, как пропадали в этом водовороте. Для детей очарование заключалось в выглядящей случайно последовательности цифр без каких-либо закономерностей и повторений, продолжающейся вечно – настоящей бесконечностью на тарелке. Первые несколько цифр в бесконечном десятичном представлении числа π таковы:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]»

Представляем Вашему вниманию похожие книги на «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]»

Обсуждение, отзывы о книге «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x