Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]

Здесь есть возможность читать онлайн «Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент МИФ без БК, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Бесконечная сила [Как математический анализ раскрывает тайны вселенной]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам.
Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика.
На русском языке публикуется впервые.

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Для реализации своей стратегии Архимеду требовалось вычислить площадь всех осколков. Но как точно определить эти осколки? Ведь параболический сегмент можно разбивать на куски бесконечным числом способов – так же как бесконечным числом способов можно разбить тарелку на части. Самый большой осколок может выглядеть вот так, или так, или вот так:

Ученому пришла в голову блестящая идея Блестящая потому что она создавала - фото 27

Ученому пришла в голову блестящая идея. Блестящая потому, что она создавала закономерность, которую можно было сохранять на всех уровнях иерархии. Он представил, как секущая линия в основании сегмента скользит вертикально, сохраняя свой наклон, пока не будет соприкасаться с параболой в единственной точке неподалеку от вершины.

Такая особая точка называется точкой касания Она определяет третью вершину - фото 28

Такая особая точка называется точкой касания. Она определяет третью вершину большого треугольника, где две другие – точки пересечения секущей и параболы.

Архимед использовал эту же тактику для определения треугольников на каждом этапе в иерархии. Например, на втором этапе треугольники выглядели так:

Обратите внимание что теперь роль наклонной линии пересекавшей треугольник на - фото 29

Обратите внимание, что теперь роль наклонной линии, пересекавшей треугольник на предыдущем этапе, играют стороны большого треугольника.

Затем Архимед использовал известные геометрические факты о параболах и треугольниках, чтобы узнать, как площади треугольников одного уровня связаны с площадью треугольников предыдущего уровня. Он доказал, что площадь каждого нового треугольника составляет 1/8 площади породившего его треугольника. Таким образом, если считать, что площадь первого, самого крупного, треугольника 1 (пусть он будет нашей единицей площади), то площадь двух дочерних треугольников будет 1/8 + 1/8 = 1/4.

На каждом следующем этапе справедливо то же правило дочерние треугольники - фото 30

На каждом следующем этапе справедливо то же правило: дочерние треугольники всегда составляют в сумме четверть площади от родительского. Следовательно, общая площадь сегмента параболы, состоящая из всего бесконечного количества осколков, должна равняться

В этом бесконечном ряду каждый член вчетверо меньше предыдущего Существует - фото 31

В этом бесконечном ряду каждый член вчетверо меньше предыдущего.

Существует простой способ вычислить сумму членов такого ряда, известного как геометрическая прогрессия. Хитрость состоит в том, чтобы избавиться от бесконечного числа слагаемых. Для этого умножим обе части уравнения на 4 и вычтем из получившегося равенства исходное. Смотрите: умножение всех членов ряда на 4 дает:

Чудо происходит между предпоследней и последней строками В предпоследней - фото 32

Чудо происходит между предпоследней и последней строками. В предпоследней строке, подобно фениксу, возродилось выражение для исходной площади: и поэтому мы получаем 4 Площадь 4 Площадь Вычитая из обеих частей - фото 33и поэтому мы получаем

4 × Площадь = 4 + Площадь .

Вычитая из обеих частей величину Площадь , получаем 3 × Площадь = 4, откуда Площадь = 4 / 3. Другими словами, площадь сегмента параболы составляет 4 / 3 от площади самого большого треугольника.

Рассуждение о сыре

Архимед не одобрил бы вышеприведенный трюк. Он получил тот же результат другим путем, используя рассуждение под названием двойное доказательство от противного. Он доказывал, что площадь сегмента параболы не может быть меньше 4 / 3 или больше 4 / 3, поэтому она должна быть равна 4 / 3. Как позднее советовал Шерлок Холмс, «отбросьте все невозможное, и то, что останется, будет истиной, какой бы невероятной она ни казалась » [59].

Принципиально важно здесь то, что Архимед устранил невозможное с помощью рассуждений, основанных на конечном количестве осколков. Он показал, что суммарная площадь всех осколков может отличаться от числа 4 / 3 сколь угодно мало – просто надо взять достаточно большое их количество. Поэтому Архимед не прибегал к бесконечности. Все в его доказательстве было железным и вполне соответствует современным стандартам строгости.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]»

Представляем Вашему вниманию похожие книги на «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]»

Обсуждение, отзывы о книге «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x