У нас нет интуитивного представления о таких событиях на атомном уровне, потому что мы – колоссальные создания, состоящие из триллионов триллионов атомов. К счастью, интуицию может заменить анализ. Вкупе с квантовой механикой он помог физикам открыть теоретическое окно в микромир. Плодами их исследований стали лазеры и транзисторы, микросхемы в компьютерах и светодиоды в телевизорах с плоским экраном.
Хотя квантовая механика во многих отношениях оперирует радикально новыми концепциями, она сохраняет традиционное предположение о непрерывности пространства и времени. Максвелл делал аналогичное предположение в своей теории электромагнитных волн, Ньютон – в теории тяготения, Эйнштейн – в теории относительности. Весь анализ, а следовательно, и вся теоретическая физика опираются на предположение о непрерывности пространства и времени. До сих пор оно приводило к ошеломляющим успехам.
Однако есть основания полагать, что в масштабах гораздо ниже атомных пространство и время теряют непрерывный характер. Мы не знаем, что действительно происходит на этом уровне, но можем строить догадки. Может оказаться, что пространство и время так же «пикселизированы», как в парадоксе Зенона «Стрела», хотя более вероятно, что из-за квантовой неопределенности они вырождаются в беспорядочный хаос. В таких малых масштабах пространство и время могут случайным образом бурлить и волноваться. Они могут меняться, как пузырящаяся пена.
Хотя в вопросе, как представлять пространство и время в этих масштабах, пока согласия нет, есть консенсус в отношении самих этих масштабов. Они определяются тремя фундаментальными константами природы, одна из которых – гравитационная постоянная G Она измеряет силу тяготения во Вселенной. Сначала эта константа появилась в ньютоновском законе всемирного тяготения, а затем в общей теории относительности Эйнштейна. Она будет и в любой теории, которая их заменит. Вторая постоянная ħ (читается «h с чертой») отражает силу квантовых эффектов [40]. Она появляется, например, в принципе неопределенности Гейзенберга и в волновом уравнении Шрёдингера, использующемся в квантовой механике. Третья константа – это скорость света c Это максимальная скорость во Вселенной. Никакой сигнал не может распространяться со скоростью, превышающей c . Эта скорость должна обязательно входить в любую теорию пространства и времени, поскольку связывает их: расстояние равно произведению скорости и времени. В 1899 году отец квантовой теории немецкий физик Макс Планк понял, что есть единственный способ объединить эти фундаментальные константы для получения единицы длины. Он пришел к выводу, что такая единица – естественная «мера длины» во Вселенной. В его честь она именуется планковской длиной [41]и определяется следующим соотношением:
Если подставить измеренные значения ħ, G и c , то планковская длина оказывается равной около 10 –35 метра – ошеломительно малое расстояние, которое примерно в сто миллионов триллионов раз меньше диаметра протона. Соответствующее планковское время – это время, за которое свет проходит такое расстояние, и оно приблизительно равно 10 –43 секунды. При меньших величинах пространство и время теряют смысл.
Эти числа ограничивают наши возможности деления пространства и времени. Чтобы ощутить уровень точности, о котором мы говорим, посмотрим, сколько цифр нам понадобится для проведения одного из самых экстремальных сравнений. Возьмем самое большое возможное расстояние – оцениваемый диаметр Вселенной, и разделим его на самое маленькое возможное расстояние – планковскую длину. Это невообразимо огромное отношение расстояний выражается числом, состоящим всего лишь из шестидесяти цифр. Хочу подчеркнуть – всего шестидесяти. И это самое большое число, которое понадобится, чтобы выразить одно расстояние через другое. Использование большего количества – скажем, сотни цифр, не говоря уже о еще б о льших числах – было бы колоссальным излишеством, не требующимся для описания каких-либо реальных расстояний в материальном мире [42].
И все же в анализе мы постоянно используем бесконечно много цифр. Уже в школе учеников просят думать о числах наподобие 0,333…, причем десятичное разложение продолжается бесконечно. Мы называем эти числа действительными, хотя в них нет ничего действительного. Определение такого числа с помощью бесконечного количества знаков после запятой не имеет ничего общего с реальностью, по крайней мере в том ее понимании, которое бытует в современной физике.
Читать дальше
Конец ознакомительного отрывка
Купить книгу