Чтобы проанализировать аргументы за и против вероятности компьютерного понимания, рассмотрим развитие компьютерных шахмат [337]. В 1997 году программа Deep Blue, созданная IBM, сумела обыграть чемпиона мира Гарри Каспарова в матче из шести партий. Хотя в тот момент эта победа стало неожиданностью, большой загадки в ней не было. Машина могла оценивать двести миллионов позиций в секунду. У нее не было понимания, но была скорость, она никогда не уставала, никогда не ошибалась и не забывала, о чем думала минуту назад. Она играла как компьютер, механически и на материальном расчете. Компьютер мог пересчитать Каспарова, но не мог его передумать. Нынешнее поколение сильнейших шахматных программ – Stockfish или Komodo – все еще играют в том же бесчеловечном стиле. Они любят выигрывать фигуры и строят железную защиту. Но хотя они намного сильнее любого игрока-человека, у них нет творческих способностей и понимания.
Все изменилось с появлением машинного обучения. Компания DeepMind, принадлежащая Google, 5 декабря 2017 года вывела на арену программу AlphaZero, использующую методы глубокого обучения, которая ошеломила шахматный мир. Программа научилась играть в шахматы, играя против самой себя и извлекая уроки из ошибок. За считаные часы она стала лучшим шахматистом в истории. Она не только могла бы легко победить лучших гроссмейстеров мира (им даже не стоило пытаться), но и сокрушила действующего чемпиона мира среди программ. В матче из ста партий против Stockfish, реально грозной программы, AlphaZero выиграла 28 раз и сыграла 72 партии вничью, не проиграв ни одной [338].
Самое страшное, что AlphaZero демонстрировала понимание. Она играла так, как не играл ни один компьютер, – интуитивно, красиво, в романтичном атакующем стиле. Программа использовала гамбиты и шла на риск. В некоторых партиях она парализовала Stockfish и просто игралась с соперником, что выглядело злобно и по-садистски. И программа действовала неимоверно творчески, делая ходы, о которых ни один гроссмейстер или компьютер не мог даже мечтать. AlphaZero объединила дух человека и мощь машины. Это было первое знакомство человечества с новым ужасающим видом интеллекта.
Предположим, мы могли бы нацелить AlphaZero или подобную программу (назовем ее AlphaInfinity [339]) на величайшие нерешенные проблемы теоретической науки, иммунологии, биологии рака или сознания. Продолжим фантазировать и допустим, что в этих явлениях существуют какие-то галилеевские или кеплеровские закономерности, которые созрели до того, чтобы быть обнаруженными, но только с помощью интеллекта, превосходящего наш. Если предположить, что такие законы существуют, сможет ли этот сверхчеловеческий разум их найти? Я не знаю. Никто не знает. К тому же все это может быть чисто теоретическими измышлениями, поскольку таких законов может и не существовать.
Но если они все же существуют и AlphaInfinity смогла бы их установить, она стала бы для нас оракулом. Мы бы сидели у ее ног и слушали. Мы бы не понимали, почему она всегда права, а порой не понимали бы даже то, что она говорит, но всегда могли бы проверить ее вычисления с помощью экспериментов или наблюдений. Казалось бы, что машина знает все. Мы превратились бы в зрителей, разинувших рот от удивления и пребывающих в замешательстве. Даже если бы она могла объяснить свою работу, мы бы не поняли ее рассуждений. В этот момент эпоха понимания, начавшаяся с Ньютона, подошла бы к концу и началась бы некая новая эпоха понимания.
Научная фантастика? Возможно. Но я думаю, что такой сценарий не исключен. В некоторых областях математики и других наук мы уже ощущаем закат понимания [340]. Существуют теоремы, доказанные компьютерами, и в этих доказательствах не может разобраться ни один человек. Теоремы верны, но мы не понимаем, почему. На данном этапе машины не могут объясниться.
Рассмотрим старую знаменитую математическую задачу под названием задача четырех красок. В ней говорится, что при определенных разумных ограничениях любую карту на плоскости или на сфере можно раскрасить в четыре цвета так, чтобы никакие две соседние страны не были окрашены в одинаковый цвет. (Посмотрите на типичную карту Европы, Африки или любого другого континента, кроме Австралии, и поймете, что я имею в виду.) Теорема о четырех красках была доказана в 1976 году с помощью компьютера, но ни один человек не мог проверить все шаги в рассуждении. Хотя с тех пор доказательство проверяли и упрощали, все равно в нем имеется часть, где используются прямые вычисления, – ровно так, как компьютеры играли в шахматы до появления AlphaZero. Появление этого доказательства у многих математиков вызвало раздражение. Они и так считали, что теорема о четырех красках верна. Им не надо было это подтверждать. Они хотели понять, почему она верна, а компьютерное доказательство в этом не помогло.
Читать дальше
Конец ознакомительного отрывка
Купить книгу