Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]

Здесь есть возможность читать онлайн «Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент МИФ без БК, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Бесконечная сила [Как математический анализ раскрывает тайны вселенной]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам.
Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика.
На русском языке публикуется впервые.

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Возможно, вы слышали, что время – это четвертое измерение. Действительно, в специальной и общей теории относительности Эйнштейна пространство и время слиты в единую сущность, пространство-время, и представлены на четырехмерной математической арене. Грубо говоря, обычное пространство соответствует первым трем осям, а время – четвертой. Эту конструкцию можно рассматривать как обобщение двумерной координатной плоскости Ферма и Декарта.

Но сейчас мы говорим не о пространстве-времени. Ограничение, присущее подходу Пуанкаре, касается гораздо более абстрактной сферы. Это обобщение абстрактного пространства состояний , с которым мы познакомились, когда рассматривали векторное поле для маятника. Тогда мы построили абстрактное пространство с одной осью для угла маятника и с другой – для его скорости. В каждое мгновение угол и скорость качающегося маятника имели конкретные значения, а значит, в тот момент они соответствовали какой-то определенной точке на плоскости для угла и скорости. Стрелки на этой плоскости (похожие на инструкции для танцоров) показывали, как это состояние меняется от момента к моменту – в соответствии с дифференциальным уравнением Ньютона для маятника. Следуя этим стрелкам, мы могли предсказать, как будет двигаться маятник. В зависимости от того, где началось движение, он мог колебаться влево-вправо или вообще вращаться. И вся эта информация содержалась в картинке.

Здесь важно понять, что пространство состояний маятника имеет два измерения, поскольку двух переменных – угла и скорости – достаточно для предсказания будущего поведения маятника. Они дают ровно ту информацию, в которой мы нуждались для прогнозирования угла и скорости в следующий момент, затем в следующий и так далее. В этом смысле маятник по своей сути – двумерная система. Его пространство состояний имеет два измерения.

Проклятие высокой размерности проявляется при столкновении с системами сложнее маятника. Возьмем, к примеру, задачу, от которой у Ньютона болела голова, – задачу трех тел. Пространство ее состояний имеет восемнадцать измерений. Чтобы понять, почему, посмотрим на одно из тел. В любой момент оно находится в какой-то точке трехмерного пространства, а потому его положение можно установить с помощью трех чисел x, y и z . Оно также может двигаться, и для определения его скорости нам нужно знать еще три числа – проекции его скорости на все три оси. Следовательно, для одного тела требуется шесть чисел: три пространственные координаты и три числа для его скорости. Положение и скорость тела определяются точкой в шестимерном пространстве. Поскольку тел три, то получается, что в пространстве состояний для трех тел должно быть 6 × 3 = 18 измерений. Таким образом, при подходе Пуанкаре изменяющееся состояние системы с тремя взаимодействующими телами представляется одной точкой, движущейся в восемнадцатимерном пространстве. Со временем эта абстрактная точка вычерчивает траекторию, подобную траектории кометы или артиллерийского снаряда, за исключением того, что это происходит не в трех измерениях, а на фантастической арене Пуанкаре – в восемнадцатимерном пространстве задачи трех тел.

Когда мы применяем нелинейную динамику к биологии, нам часто приходится представлять пространства еще более высокой размерности. Например, в нейробиологии мы должны отслеживать все меняющиеся концентрации ионов калия, натрия, кальция, хлора и прочих, участвующих в уравнениях Ходжкина и Хаксли для мембраны. Современные версии этих уравнений могут включать сотни переменных, представляющих изменяющиеся концентрации ионов в нервной клетке, изменяющееся напряжение на клеточной мембране, а также изменяющуюся способность мембраны пропускать различные ионы и позволять им попадать в клетку или выходить из нее. Абстрактное пространство состояний в этом случае имеет сотни измерений, по одному для каждой переменной: одно для концентрации калия, второе для концентрации натрия, третье для напряжения, четвертое для проводимости натрия, пятое для проводимости калия и так далее. В любой конкретный момент все эти переменные принимают определенные значения. Уравнения Ходжкина – Хаксли (или их обобщения) дают этим переменным инструкции по перемещению, указывающие, как им двигаться дальше по их траекториям. Таким образом, динамику нервных клеток, клеток мозга или сердца можно прогнозировать, причем иногда с удивительной точностью, с помощью компьютеров, вычисляющих эти траектории в пространстве состояний. Плоды такого подхода используются при изучении нервных патологий и сердечных аритмий, а также для разработки улучшенных дефибрилляторов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]»

Представляем Вашему вниманию похожие книги на «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]»

Обсуждение, отзывы о книге «Бесконечная сила [Как математический анализ раскрывает тайны вселенной]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x