Дама [330]Мэри Картрайт скончалась в 1998 году в возрасте 97 лет. Она стала первой женщиной-математиком, избранной в Лондонское королевское общество. Она оставила строгие указания, чтобы на поминальной службе не произносили хвалебных речей.
Альянс между анализом и компьютерами
Необходимость решать дифференциальные уравнения во время войны подстегнула развитие вычислительной техники. Механические и электронные мозги, как их в те дни иногда называли, можно было применять для вычисления траекторий ракет и артиллерийских снарядов при реалистичных условиях – с учетом сопротивления воздуха и направления ветра. Эта информация требовалась артиллеристам для поражения целей: все необходимые баллистические расчеты производились заранее и сводились в стандартные таблицы и диаграммы. Для такой задачи нужны были машины с высокой производительностью. При математическом моделировании компьютеры могли продвигать идеализированный снаряд по траектории его полета – один маленький шажок за другим, используя подходящее дифференциальное уравнение для определения нового положения и скорости снаряда. Объединяя все эти маленькие приращения, компьютер получал решение. Только машина могла выполнять все необходимые сложения и умножения – правильно, быстро и без устали.
Наследие анализа очевидно в названиях некоторых ранних компьютеров [331]. Одним из них было механическое устройство под названием дифференциальный анализатор. Его задача заключалась в решении дифференциальных уравнений, необходимых для составления артиллерийских таблиц. Другая машина называлась ENIAC (Electronic Numerical Integrator and Computer – Электронный числовой интегратор и вычислитель). Здесь слово «интегратор» использовалось в математическом смысле и относилось к взятию интегралов или интегрированию дифференциальных уравнений. Полностью готовый в 1945 году, ЭНИАК стал одним из первых перепрограммируемых компьютеров общего назначения. Наряду с составлением таблиц стрельбы он также оценивал техническую осуществимость водородной бомбы.
Хотя развитие компьютеров стимулировало военное применение анализа и нелинейной динамики, и эти машины, и разработанная теория нашли себе сферы приложения и в мирное время. В 1950-е годы ученые начали использовать их для решения задач, возникающих в их собственных дисциплинах, а не только в физике. Например, британские биологи Алан Ходжкин и Эндрю Хаксли [332]с помощью компьютера пытались понять, как нервные клетки общаются друг с другом и как электрические сигналы проходят по нервным волокнам. Они провели кропотливые эксперименты по расчету потока ионов калия и натрия через мембрану очень большого и удобного для экспериментирования нервного волокна – гигантского аксона кальмара [333]и в результате эмпирически выяснили, как эти потоки зависят от напряжения на мембране и как это напряжение изменяется при движении ионов. Но чего они не могли вычислить без компьютера, так это скорость и форму нервного импульса, проходящего по аксону. Для определения его движения требовалось решить нелинейное дифференциальное уравнение в частных производных для напряжения как функции от времени и пространства. Эндрю Хаксли решил его за три недели с помощью ручного механического калькулятора.
В 1963 году Ходжкин и Хаксли получили Нобелевскую премию за открытие ионной основы работы нервных клеток. Их подход вдохновил всех, кто интересовался применением математики к биологии. Она определенно выглядела перспективной областью для использования анализа. Математическая биология [334] – место, где есть простор для нелинейных дифференциальных уравнений. Опираясь на ньютоновские аналитические методы, геометрические методы в стиле Пуанкаре и максимально задействуя потенциал компьютеров, специалисты по математической биологии выводят и добиваются прогресса в решении дифференциальных уравнений, описывающих сердечные ритмы, распространение эпидемий, работу иммунной системы, взаимодействие генов, развитие рака и многие другие загадки жизни. Ничего этого мы бы не сделали без анализа.
Сложные системы и проклятие высокой размерности
Самое серьезное ограничение подхода Пуанкаре связано с человеческим мозгом, который не может представить себе пространства из более чем трех измерений. Естественный отбор настроил нашу нервную систему на восприятие трех измерений обычного пространства – вверх-вниз, влево-вправо, вперед-назад. Как бы мы ни старались, мы не можем изобразить четвертое измерение (я не имею в виду – мысленным взглядом). Однако с помощью символов мы можем попробовать работать с любым числом измерений: Ферма и Декарт показали нам, как это делать. Их координатная плоскость научила нас связывать числа и размерность пространства. Направление влево-вправо соответствовало числу x , вверх-вниз – числу y . Добавив новые числа, мы получим новые измерения. Для трех измерений достаточно x, y и z . Почему бы не взять четыре измерения или пять? Ведь букв еще много.
Читать дальше
Конец ознакомительного отрывка
Купить книгу