Алекс Беллос - Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Здесь есть возможность читать онлайн «Алекс Беллос - Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Манн, Иванов и Фербер, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест.
Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки.
На русском языке публикуется впервые.

Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1. С помощью двух фитилей отмерьте 45 минут.

2. С помощью одного фитиля как можно точнее отмерьте 20 минут.

Соль этой задачи в том, что понимание математики позволяет исключить условие неравномерности горения и точно отмерить промежутки времени. Мне нравится, что в этой головоломке математика берет верх над физикой.

Ниже предложена еще одна головоломка о том, как преодолеть несовершенство физического мира.

Ответ

60. НЕПРАВИЛЬНАЯ МОНЕТА

В случае подбрасывания обычной монеты вероятность выпадения орла или решки равна 50: 50. Допустим, ваша монета с дефектом, из-за чего вероятность выпадения орла или решки составляет не 50: 50, а какое-то другое соотношение. Можно ли сделать так, чтобы она вела себя как обычная монета? Необходимо найти такую комбинацию подбрасываний, которая обеспечит результат 50: 50.

Монеты – важнейший инструмент в мире головоломок; в следующей главе мы поговорим о них подробнее.

Рычажные весы были единственным инструментом для взвешивания предметов вплоть до XVIII столетия, когда были изобретены пружинные весы с одной чашей. Будучи распространенным измерительным прибором, рычажные весы часто были героями математических головоломок, начиная с эпохи Возрождения до эпохи Просвещения и позднее. Решите одну из них.

Ответ

61. РАЗДЕЛИТЕ МУКУ

У вас есть рычажные весы и две гири весом 10 и 40 граммов. Разделите 1 килограмм муки на две части – 200 и 800 граммов – за три взвешивания.

Предположим, у нас есть набор килограммовых гирь, соответствующих первым шести членам последовательности удваивающихся чисел: 1, 2, 4, 8, 16, 32. Комбинируя эти шесть гирь, можно получить любой вес от 1 до 63 килограммов. Например:

3 = 2 + 1.

Другими словами, для того чтобы получить 3 килограмма, необходимо взять две гири весом 2 и 1 килограмм.

13 = 8 + 4 + 1;

27 = 16 + 8 + 2 + 1;

63 = 32 + 16 + 8 + 4 + 2 + 1.

В действительности шесть гирь образуют минимальный набор , позволяющий измерить любой вес в килограммах от 1 до 63.

Почему это так, можно понять, рассматривая выражение веса в двоичных числах. В двоичной системе счисления используются только цифры 1 и 0. Двоичные числа – это числа десятичной системы, записанные с помощью 1 и 0: 1, 10, 11, 100, 110 и т. д. Числа 1, 10, 100, 1000, 10 000 и 100 000 в двоичной системе счисления соответствуют десятичным числам 1, 2, 4, 8, 16 и 32. Таким образом, двоичные числа – это своего рода инструкции в отношении того, как выстраивать числа с помощью последовательности, в которой каждый очередной член в два раза больше предыдущего. Таким образом, в двоичной системе следующие числа записываются так:

3 – это 11

13 – 1101

27 – 11 011

63 – 111 111

Цифра 1 в крайнем правом столбце соответствует 1, цифра 1 в соседнем столбце – 2, цифра 1 в следующем столбце – 4 и т. д. Аналогичным образом цифра 0 в крайнем правом столбце означает отсутствие цифры 1, цифра 0 в соседнем столбце означает отсутствие цифры 2, цифра 0 в следующем столбце – отсутствие цифры 4 и т. д.

Итак, возьмем число 13, которое записывается в двоичной системе как 1101. Эта группа цифр справа налево означает: одна цифра 1, нет цифры 2, одна цифра 4 и одна цифра 8. Другими словами, 13 = 1 + 4 + 8 – как и было сказано.

Но давайте больше не будем отвлекаться на двоичные числа, какой бы интересной ни была эта тема. Вернемся к весам и гирям.

Поскольку наш набор гирь (1, 2, 4, 8, 16, 32) позволяет измерить любой вес в килограммах от 1 до 63, мы можем взвесить любое целое количество килограммов от 1 до 63, положив на одну из чаш весов соответствующую комбинацию гирь. А что, если использовать обе чаши?

Ответ

62. ЗАДАЧА БАШЕ О ВЗВЕШИВАНИИ

У вас есть рычажные весы. С помощью какого минимального набора гирь можно измерить любой вес от 1 до 40 килограммов в целых числах, если гири можно класть на любую чашу?

Эта задача включена в книгу Леонардо Пизанского Liber Abaci («Книга абака», или «Трактат об арифметике»), хотя она более известна как задача о гирях французского математика Клода Гаспара Баше.

Баше был поэтом, переводчиком и математиком, а также автором сборника головоломок. В 1612 году он опубликовал первое издание книги Problèmes Plaisants et Délectables Qui Se Font Par Les Nombres («Занимательные и приятные числовые задачи»). В ней собраны многие из тех головоломок, с которыми вы здесь уже встречались, такие как переправа через реку, покупка сотни птиц и переливание жидкости в трех кувшинах. На протяжении трех столетий сборник Problèmes Plaisants считался стандартным текстом по занимательной математике, на нем основывалась вся последующая литература о головоломках. Кроме того, в книге Баше представлен самый известный анализ задачи с рычажными весами.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления»

Представляем Вашему вниманию похожие книги на «Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Алекс Беллос
Отзывы о книге «Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления»

Обсуждение, отзывы о книге «Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x