Бен Орлин - Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность

Здесь есть возможность читать онлайн «Бен Орлин - Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Издательство: Альпина нон-фикшн, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Вы с содроганием вспоминаете школьные уроки математики? Это нормально, ведь у вас не преподавал Бен Орлин, автор этой книги. Впрочем, и он не сразу додумался объяснять ученикам, что вообще-то математика лежит в основе всего на свете: от лотереи до «Звездных войн», от рецептуры шоколадных пирогов до выборов. И что тот, кто овладел основами точной науки, получает возможность разобраться в природе и устройстве окружающих нас вещей и явлений.
Орлин выступает не только как педагог, но и как художник-иллюстратор: его смешные человечки и закорючки покорили тысячи школьников, покорят и вас. Изящные каламбуры и забавные ассоциации, игры разума и цифровые загадки (к каждой из которых вы получите элегантную и ироничную разгадку) и, конечно, знаменитые фирменные рисунки (которые, вопреки заглавию, не такие уж дурацкие) позволяют Орлину легко и остроумно доносить самые сложные и глубокие математические идеи и убеждают в том, что даже математика может быть страшно интересной.

Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Симметрия предлагает верный путь к честной игре. Просто выберите геометрическое тело, достаточно симметричное, чтобы все грани можно было поменять местами.

Например, бипирамида. Возьмите две идентичных пирамиды и приклейте их основания друг к другу. Правильная комбинация поворотов сможет поменять любую треугольную грань на любую другую, и это означает, что все грани геометрически эквивалентны и игральная кость честная.

Другой пример трапецоэдр Он выглядит как бипирамида 32 32 Его иногда - фото 116

Другой пример: трапецоэдр. Он выглядит как бипирамида {32} 32 Его иногда называют косая бипирамида . — Прим. науч. ред. с изящной резьбой по экватору, которая превращает треугольники в четырехугольники, похожие на воздушных змеев.

Вы можете сделать бипирамиду или трапецоэдр с любым количеством граней 8 14 - фото 117

Вы можете сделать бипирамиду или трапецоэдр с любым количеством граней: 8, 14, 26, 398 {33} 33 С любым четным, начиная с 6. Кстати, куб — это частный случай шестигранного трапецоэдра. — Прим. науч. ред. . Теоретически любая из этих игральных костей обеспечит честную игру, грани будут выпадать с одинаковой вероятностью. Наверное, вы думаете, что мы решили проблему. Игра в кости окончена, да? Не так быстро! Люди гораздо капризнее. Недостаточно, чтобы игральная кость была честной…

Математика с дурацкими рисунками Идеи которые формируют нашу реальность - изображение 118

Правило № 2. Хорошая игральная кость выглядит прелестно

Мы встретились с номинантами на роль игральной кости, которые (1) легко поддаются определению, (2) дают справедливые результаты и (3) носят потрясающие греческие и латинские именами. Однако эти многообещающие модели — стопроцентные исторические неудачники, провалившиеся кандидаты в президенты мира случайности. Насколько я знаю, ни одна цивилизация, играющая в кости, не пользовалась бипирамидой и есть всего один пример использования трапецоида: теневое сообщество фанатов настольной игры «Подземелья и драконы», где используют десятигранный трапецоид (d10) {34} 34 В играх на придумывание сюжетов иногда используют 14-гранный трапецоэдр, чтобы задать день недели. — Прим. науч. ред. .

Человечество, почему ты так привередливо? Как ты можешь отвергать прекрасные формы и разбрасываться честными игральными костями?

Киньте на стол тощую бипирамиду, и вы увидите, в чем проблема. Она не кувыркается. Уравновешенная двумя заостренными концами, она почти что катится, словно рулон бумажных полотенец, заваливаясь влево-вправо и повышая шансы то одной, то другой группы граней. Ее равновесие после остановки хрупко; один неосторожный вздох — и она перевернется на другую грань. Это не рецепт веселой игры в парчиси, а гарантия семейного скандала со взаимными упреками.

У наилучшей игральной кости симметричны не только грани Нужно чтобы все ее - фото 119

У наилучшей игральной кости симметричны не только грани. Нужно, чтобы все ее компоненты было симметричными. И если вы страстный поклонник многогранников, то вы понимаете, что это значит.

Платоновы тела!

Из всех трехмерных геометрических фигур с прямыми ребрами платоновы тела самые совершенные. Можно поменять местами любые две грани, угла или ребра — симметрия настолько великолепна, что даже закоренелый циник не усомнится в их выдающейся честности.

Есть всего пять платоновых тел, ни больше и ни меньше. И каждый бог этого геометрического пантеона снизошел на землю в образе игральной кости.

1. Тетраэдр— пирамида, состоящая из равносторонних треугольников. За 3000 лет до н. э. обитатели Древней Месопотамии кидали игральные кости в виде тетраэдра во время Царской игры города Ур, предшественницы игры в нарды.

2 Куб призма с квадратными гранями Простой устойчивый легко изготовляемый - фото 120

2. Куб— призма с квадратными гранями. Простой, устойчивый, легко изготовляемый, он остается самой популярной формой игральных костей за всю историю человечества. Древнейший экземпляр — куб из обожженной глины, найденный на раскопках в Северном Ираке, — датируют 2750 годом до н. э.

3 Октаэдр особая бипирамида грани которой представляют собой равносторонние - фото 121

3. Октаэдр— особая бипирамида, грани которой представляют собой равносторонние треугольники. Игральные кости в виде октаэдров были найдены в нескольких египетских гробницах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность»

Представляем Вашему вниманию похожие книги на «Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность»

Обсуждение, отзывы о книге «Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x