«Бесполезная» геометрия становится чертовски полезной.
Мой любимый пример касается логики как таковой. Ранние философы вроде Аристотеля разработали логическую символику («если p , то q ») как руководство научного мышления. Потом на нее покусились математические теоретики и превратили логику в нечто необычное и абстрактное. Реальность улетучилась. В XX веке люди вроде Бертрана Рассела сочиняли фолианты с латинскими заголовками {16} 16 Трехтомная монография Principia Mathematica выпущена в 1910–1913 годах издательством Кембриджского университета ( Уайтхед А., Рассел Б. Основания математики: В 3 т. / Под ред. Г. П. Ярового, Ю. Н. Радаева. — Самара: Самарский университет, 2005–2006). — Прим. пер.
с целью «доказать», исходя из элементарных предпосылок, что 1 + 1 = 2. Что может быть более бесполезным, более безнадежным? [15] Эта история изложена в графическом романе: Apostolos Doxiadis et al., Logicomix: An Epic Search for Truth (New York: Bloomsbury, 2009). [ Доксиадис А., Пападимитриу Х. Логикомикс. Поиск истины. — М.: Карьера Пресс, 2019.]
Одна мама пилила сына-логика: «Солнышко, к чему тебе вся эта абстрактная математика? Почему бы не заняться чем-нибудь полезным?» [16] James Gleick, The Information: A History, a Theory, a Flood (New York: Knopf Doubleday, 2011). Блестящая книга. [ Глейк Дж. Информация. История. Теория. Поток. — М.: Corpus, 2013.]
Маму звали Этель Тьюринг. Вскоре выяснилось, что ее сын Алан все-таки на что-то годен: он изобрел логическую машину, которую мы теперь называем «компьютер».
Я не могу винить ее за скептицизм. Кто бы мог подумать, что исследование логических систем, которое вел ее сын, определит облик нового столетия? Сколько примеров я ни узнавал, этот исторический цикл перехода полезного в бесполезное и снова в полезное остается для меня чудом и тайной.
Мое любимое описание этого феномена — чеканная фраза физика Юджина Вигнера: «Непостижимая эффективность математики» [17] Eugene Wigner, «The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Richard Courant lecture in mathematical sciences delivered at New York University, May 11, 1959», Communications on Pure and Applied Mathematics 13 (1960): 1–14. Сногсшибательное эссе. [Статья Юджина Вигнера «Непостижимая эффективность математики в естественных науках» в переводе В. А. Белоконя и В. А. Угарова была опубликована в журнале «Успехи физических наук» в 1968 году (Т. 94, С. 535–546; https://ufn.ru/ru/articleszf/ ). — Прим. науч. ред. ]
. В конце концов, бактерии не знают теорию узлов, так почему они следуют ее законам? Пространственно-временной континуум не изучал гиперболическую геометрию, почему тогда ее теоремы выполняются так безупречно?
Я читал философов, которые пытались ответить на эти вопросы, но, на мой взгляд, их тезисы умозрительны и противоречивы, и никто из них не смог умерить мое изумление.
Итак, как лучше понять взаимоотношения между поэтессой, которую мы называем Математика, и искателем приключений, известным как Естествознание? Возможно, мы должны рассматривать их связь как симбиоз двух весьма разных существ. Например, птица, поедающая насекомых, примостилась на спине носорога. У носорога не зудит кожа. Птица удовлетворяет аппетит. И они оба счастливы.
Если вы захотите изобразить математику, нарисуйте изящное существо, оседлавшее серую морщинистую тушу.
Глава 5. Хороший математик против великого математика
Развенчивать мифы невероятно весело. Просто посмотрите на беззаботные взрывы смеха и улыбки до ушей ведущих телешоу «Разрушители легенд» {17} 17 MythBusters — научно-популярная телепередача на канале Discovery (2003–2016). — Прим. пер.
, и вы увидите: это карьера с высокой степенью удовлетворенности от работы.
Гораздо сложнее вносить поправки в мифы. Многие преобладающие в культуре взгляды на математику не то чтобы ошибочны — они просто искажены, неполны или гиперболизированы. Важны ли вычисления? Конечно же, но ими дело не ограничивается. Уделяет ли математика внимание деталям? Да, равно как вязание и паркур. Был ли Карл Гаусс прирожденным гением? Ну да, но красивые доказательства в основном находят не депрессивные немецкие перфекционисты {18} 18 Карл Фридрих Гаусс (1777–1855), которого называли королем математиков, погрузился в тяжелую депрессию, когда не смог довести до конца вычисления по теории возмущений орбиты астероида Паллада в начале XIX века. Это состояние усугубила смерть его жены и новорожденного сына. См.: Гиндикин С. Рассказы о физиках и математиках. — М.: МЦНМО, 2001 ( https://www.mccme.ru/free-books/gindikin/contes.pdf ). — Прим. пер.
, а обычные люди вроде нас с вами.
Читать дальше
Конец ознакомительного отрывка
Купить книгу