Айзек Азимов - Числа - от арифметики до высшей математики

Здесь есть возможность читать онлайн «Айзек Азимов - Числа - от арифметики до высшей математики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: Эксмо, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Числа: от арифметики до высшей математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Числа: от арифметики до высшей математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Знаменитый фантаст и популяризатор науки сэр Айзек Азимов в этой книге решил окунуть читателя в магию чисел Свой увлекательный рассказ Азимов начинает с древнейших времен, когда человек использовал для вычислений пальцы, затем знакомит нас со счетами, а также с историей возникновения операций сложения, вычитания, умножения и деления Шаг за шагом, от простого к сложному, используя занимательные примеры, автор ведет нас тем же путем, которым шло человечество, совершенствуя свои навыки в математике.

Числа: от арифметики до высшей математики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Числа: от арифметики до высшей математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теперь перейдем в отрицательную область шкалы. Предположим, надо к -2 прибавить +5. (С этого момента и до конца этой главы мы будем ставить знаки « + » перед положительными числами и заключать в скобки как положительные, так и отрицательные числа, чтобы не путать знаки перед числами со знаками сложения и вычитания.) Теперь нашу задачу можно записать как (-2) + (+5). Чтобы ее решить, от точки -2 вверх поднимемся на пять делений и окажемся на точке +3.

Есть ли в этой задаче какой-то практический смысл? Конечно есть. Предположим, у вас есть долг 2 доллара, а вы заработали 5 долларов. Таким образом, после того, как вы отдадите долг, у вас останется 3 доллара.

Можно также двигаться вниз по отрицательной области шкалы. Предположим, нужно из -2 вычесть 5, или (-2) - (+5). От точки -2 на шкале отложим вниз пять делений и окажемся в точке -7. Какой практический смысл у этой задачи? Предположим, у вас был долг 2 доллара и вам пришлось занять еще 5. Теперь ваш долг равен 7 долларам.

Мы видим, что с отрицательными числами можно проводить такие же операции сложения и вычитания, как и с положительными.

Правда, мы еще освоили не все операции. К отрицательным числам мы прибавляли только положительные числа и вычитали из отрицательных чисел только положительные. А как действовать, если надо складывать отрицательные числа или из отрицательных чисел вычитать отрицательные?

На практике это похоже на операции с долгами. Предположим, с вас списали долг 5 долларов, это означает то же самое, как если бы вы получили 5 долларов. С другой стороны, если я каким-то образом заставлю вас принять ответственность за чей- то долг в 5 долларов, это то же самое, что забрать у вас эти 5 долларов. То есть вычесть -5 — это то же самое, что прибавить +5. А прибавить -5 — это то же самое, что вычесть +5.

Это позволяет нам избавиться от операции вычитания. Действительно, «5 - 2» — это то же самое, что (+5) - (+2) или согласно нашему правилу (+5) + (-2). И в том и в другом случае мы получаем один и тот же результат. От точки +5 на шкале нам нужно спуститься вниз на два деления, и мы получим +3. В случае 5 - 2 это очевидно, ведь вычитание — это движение вниз.

В случае (+5) + (-2) это менее очевидно. Мы прибавляем число, а это означает движение вверх по шкале, но мы прибавляем отрицательное число, то есть совершаем обратное действие, и эти два фактора, взятые вместе, означают, что нам надо двигаться не вверх по шкале, а в обратном направлении, то есть вниз.

Таким образом, мы опять получаем ответ +3.

Почему, собственно, нужно заменять вычитание сложением? Зачем двигаться вверх «в обратном смысле»? Не проще ли просто двигаться вниз? Причина заключается в том, что в случае сложения порядок слагаемых не имеет значения, в то же время в случае вычитания он очень важен.

Мы уже выяснили раньше, что (+5) - (+2) — это совсем не то же самое, что (+2) - (+5). В первом случае ответ +3, а во втором -3. С другой стороны, (-2) + (+5) и (+5) + (-2) в результате дают +3. Таким образом, переходя на сложение и отказываясь от операций вычитания, мы можем избежать случайных ошибок, связанных с перестановкой слагаемых.

Аналогично можно действовать при вычитании отрицательного числа. (+5) - (-2) — это то же самое, что (+5) + (+2). И в том и в другом случае мы получаем ответ +7. Мы начинаем с точки +5 и двигаемся «вниз в обратном направлении», то есть вверх. Точно так же мы бы действовали, решая выражение (+5) + (+2).

Замену вычитания сложением ученики активно используют, когда начинают изучать алгебру, и поэтому эта операция называется «алгебраическим сложением». На самом деле это не совсем справедливо, поскольку такая операция, очевидно, является арифметической, а совсем не алгебраической.

Глава 3

В ОБХОД «СЛОЖЕНИЯ»

Плюс и полюс и плюс и полюс

Предположим, мы нарисовали квадрат со стороной в 1 дюйм. Такой квадрат можно назвать квадратным дюймом и использовать его как единицу площади.

Теперь нарисуем квадрат со стороной 2 дюйма, затем разделим каждую сторону пополам и разделим квадрат на четыре части. Каждая часть будет представлять собой 1 квадратный дюйм. Проделаем такую же операцию с квадратом со стороной 3 дюйма, но на этот раз каждую сторону разделим на три части. В результате мы получим 9 квадратов площадью 1 квадратный дюйм каждый.

Затем такую же операцию произведем с прямоугольником длиной 9 дюймов и шириной 6 дюймов. После деления мы получим 54 квадрата площадью по 1 квадратному дюйму. Все эти действия показаны на рисунке.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Числа: от арифметики до высшей математики»

Представляем Вашему вниманию похожие книги на «Числа: от арифметики до высшей математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Числа: от арифметики до высшей математики»

Обсуждение, отзывы о книге «Числа: от арифметики до высшей математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x