Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]

Здесь есть возможность читать онлайн «Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент МИФ без БК, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Профессор Иэн Стюарт в увлекательной манере и с юмором рассказывает о том, как развивалась математика – с древнейших времен и до наших дней. Он рассматривает наиболее значимые темы и события, обращая особое внимание на их прикладной характер.
Вы познакомитесь с виднейшими математиками своих эпох, а также узнаете, как то или иное математическое открытие повлияло на нас и нашу историю.
Эта книга для математиков и всех, кто интересуется историей математики и науки вообще.
На русском языке публикуется впервые.

Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
ЧТО ТЕОРИЯ ВЕРОЯТНОСТЕЙ ДАЛА ИМ

В 1710 г. Джон Арбетнот представил в Королевское общество Великобритании статью, в которой с помощью теории вероятностей доказывал существование Бога. Он проанализировал ежегодное число крещений младенцев мужского и женского пола в 1629–1710 гг. и обнаружил, что мальчиков было немногим больше, чем девочек. Более того, эта разница оставалась практически неизменной каждый год. Этот факт был уже тогда хорошо известен, но Арбетнот вычислил вероятность того, что пропорция постоянна. Его результат получился очень маленьким: 2 −82. Он указал, что если такой эффект наблюдается во всех странах, во все времена и у всех народов, то шанс был бы еще меньше. Из чего он сделал вывод, что всё происходит не по случайности, а благодаря божественному провидению.

А в 1872 г. Фрэнсис Гальтон использовал теорию вероятностей для оценки действенности молитв исходя из того, что огромное число людей каждый день возносят молитвы о здоровье королевской семьи. Он собрал данные по «средней продолжительности жизни мужчин из различных сословий, проживших более 30 лет, от 1758 до 1843 г.», добавив, что «исключил смерти от несчастного случая». В его выборку вошли аристократы, королевская семья, духовенство, адвокаты, врачи, дворяне, купцы, офицеры армии и флота, деятели науки, литературы и искусства. Он обнаружил, что «властители буквально самые коротко живущие из всех состоятельных слоев общества. Таким образом, молитвы совершенно бесполезны, если только не прибегнуть к весьма спорной гипотезе, будто условия жизни королевской семьи настолько фатальны, что отчасти, хотя и не полностью, могут нейтрализовать эффект народных молитв».

Другая базовая теорема может быть рассмотрена для случая повторных бросков бракованной (смещенной) монеты с вероятностью p для выпадения орла и q = 1 – p для выпадения решки. Если монету бросить дважды, какова будет вероятность того, что орел выпадет 2, 1 или 0 раз? Ответ Бернулли был p 2, 2 pq и q 2. Таковы результаты при разложении выражения ( p + q ) 2в p 2+ 2 pq + q 2. А если монету бросить три раза, вероятность того, что орел выпадет 3, 2, 1 или 0 раз, равна последовательности множителей в выражении ( p + q ) 3= p 3+ 3 p 2 q + 3 q 2 p + q 3.

В более общем виде, если монету бросить n раз, вероятность выпадения орла m раз будет равна:

т е соответствующему члену в разложении p q n В 17301738 гг Абрахам - фото 216

т. е. соответствующему члену в разложении ( p + q ) n.

В 1730–1738 гг. Абрахам де Муавр продолжил опыты Бернулли со смещенной монетой. Когда m и n достаточно велики, трудно точно вычислить биномиальный коэффициент, и де Муавр вывел приблизительную формулу, соответствующую биномиальному распределению Бернулли, которое сейчас мы называем функцией ошибок или нормальным распределением :

Укрощение бесконечности История математики от первых чисел до теории хаоса litres - изображение 217

Де Муавр заслуженно считается первым математиком, явно показавшим эту связь. Это стало краеугольным камнем в развитии как теории вероятностей, так и статистики.

Определение вероятности

Основной проблемой теории вероятностей оставалось определение вероятности. Даже самые простые задачи – на которые все знают ответ – были чреваты логическими затруднениями. Если мы бросаем монету, то в длительном периоде ожидаем равного числа выпадений орлов и решек, и вероятность для каждого варианта равна 1/ 2.

Естественно, для такой вероятности монета должна быть «честной». Поврежденная может всё время выпадать орлом. Но что значит «честной»? Прежде всего, что орел и решка равновозможны. Но само выражение «равновозможны» подразумевает вероятность. Логика кажется круговой. Чтобы вычислить вероятность, нужно знать, что она собой представляет.

Чтобы выйти из этого тупика, придется вернуться к Евклиду, вдохновившему алгебраистов XIX и XX вв. Аксиомы. Хватит тревожиться о том, что такое вероятность. Запишите свойства, которыми, по вашему мнению, она должна обладать, и представьте их в виде аксиом. А потом выводите из них всё остальное.

Тогда возникает вопрос: что такое правильные аксиомы? Когда вероятность определяется по конечному множеству событий, ответить на него несложно. Однако применение теории вероятностей часто относится к потенциально бесконечному множеству возможностей. Скажем, если вы измерите угол между двумя звездами, то он будет равен некоему действительному числу между 0 и 180°. Но там бесконечно много действительных чисел. Если вы метаете дротик в доску долгое время с равным шансом попасть в любую точку на ней, то вероятность попасть в конкретную область будет равна площади этой области, деленной на общую площадь доски. Но на доске для дротиков имеется бесконечно много точек, а значит, бесконечно много областей.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]»

Представляем Вашему вниманию похожие книги на «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]»

Обсуждение, отзывы о книге «Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x