Он доказал эти утверждения изначально в рамках признанных логических математических формулировок, принятых Расселом и Уайтхедом в их «Принципах математики». Поначалу Гильберт надеялся, что есть выход: надо просто найти более прочный фундамент. Но когда логики ознакомились с работой Гёделя, то очень быстро поняли, что те же идеи сработают для любой логической формулировки в математике, достаточно строгой, чтобы ясно выразить основные понятия арифметики.
КУРТ ГЁДЕЛЬ 1906–1978
В 1923 г., когда Гёдель поступил в университет в Вене, он еще не мог выбрать, изучать ли ему математику или физику. На его решение повлияли лекции парализованного Филиппа Фуртвенглера (брата известного дирижера и композитора Вильгельма). Сам Гёдель с детства был слаб здоровьем, и воля Фуртвенглера, сумевшего преодолеть физическую немощь, произвела на него большое впечатление. На семинарах под руководством Морица Шлика Гёдель начал изучать «Введение в математическую философию» Рассела, и тогда ему стало окончательно ясно, что его будущее связано с математической логикой.
Его докторскаядиссертация от 1930 г. доказывала, что одна ограниченная логическая система – исчисление высказываний первого порядка – является полной. Всякая истинная теорема может быть доказана и всякая ложная – опровергнута. Больше всего он известен благодаря доказательству гёделевых теорем о неполноте. В 1931 г. Гёдель опубликовал свою судьбоносную статью «О принципиально неразрешимых положениях в системе Principia Mathematica и родственных ей системах». В ней он доказывал, что ни одна система аксиом не будет логически полной для безупречной формализации математики. В 1931 г. он вступил в дискуссию о своей работе с логиком Эрнстом Цермело, но встреча ученых прошла неудачно, возможно потому, что Цермело успел прийти к таким же открытиям, только не смог их опубликовать.
В 1936 г. Шлик погиб от руки студента-нациста, и у Гёделя случился нервный срыв (уже второй). Оправившись от болезни, Гёдель выступил с несколькими лекциями в Принстоне. В 1938 г. он вопреки желанию матери женился на Адели Поркерт и вернулся в Принстон после включения Австрии в состав Германии. После начала Второй мировой войны Гёдель из опасений быть призванным на службу в немецкую армию эмигрировал в США, пробираясь через Россию и Японию. В 1940 г. он получил второй плодотворный результат, доказав, что отрицание континуум-гипотезы Кантора недоказуемо в стандартной аксиоматике теории множеств.
Он получил гражданство СШАв 1948 г. и провел остаток жизни в Принстоне. С годами он всё больше опасался за свое здоровье, пока не убедил себя в том, что кто-то пытается его отравить. Он отказался от пищи и скончался в больнице. До самого конца он любил вести философские диспуты со своими посетителями.
Любопытным следствием открытий Гёделя стал вывод, что всякая аксиоматическая система в математике должна быть неполна и вы никогда не сможете написать конечный список аксиом, который однозначно определит все истинные и ложные теоремы. Исключения не было: программа Гильберта не работала. Поговаривают, что сам Гильберт пришел в ярость, впервые услышав о работе Гёделя. Однако гневаться скорее стоило на себя, ведь основная идея в работе Гёделя была безупречна. (Техническое воплощение этой идеи оказалось очень сложным, но Гильберт всегда отлично справлялся с такими трудностями.) Скорее всего, Гильберт понял, что он должен был предвидеть появление теорем Гёделя.
Рассел свел на нет значение книги Фреге своим логическим парадоксом о сельском брадобрее, который бреет всякого, кто не бреется сам: множество всех множеств, не являющееся элементом самого себя. Гёдель свел на нет значение программы Гильберта другим логическим парадоксом – человека, который сказал: это утверждение ложно. По сути, это неразрешимое утверждение Гёделя – на котором строится всё остальное – теорема T, которая утверждает: «Эта теорема не может быть доказана».
Если всякая теорема не может быть ни доказана, ни опровергнута, то утверждение Гёделя T противоречиво в обоих случаях. Предположим, Т можно доказать. Тогда Т утверждает, что Т не может быть доказано, – противоречие! А если Т можно опровергнуть, то утверждение Т ложно, и будет ошибкой утверждать, что Т не может быть доказано. Получается, Т можно доказать, – снова противоречие. Следовательно, предположение о том, что всякую теорему можно доказать или опровергнуть, говорит нам, что Т может быть доказано тогда и только тогда, когда оно не может быть доказано.
Читать дальше