Гильберт также настаивал, что логический вывод должен быть обоснованным независимо от особенностей его интерпретации. Всё, что удовлетворяет какой-то интерпретации аксиом, но не удовлетворяет другой, чревато логическими ошибками. И именно этот подход к аксиоматике, а не частные исследования геометрии стал в итоге самым весомым вкладом Гильберта в основания математики. Его точка зрения повлияла на саму суть математики, делая ее намного проще – и респектабельнее – при изобретении новых концепций путем составления для них списка аксиом. Большинство абстрактных исследований в математике начала ХХ в. исходит как раз из позиции Гильберта.
Часто говорят, что Гильберт отстаивал утверждение, будто математика – отвлеченная игра в символы, но это преувеличение. Гильберт считал, что если вы хотите подвести под свою идею надежную логическую основу, следует рассуждать о ней так, как если бы она была отвлеченной игрой в символы. Всё остальное не имеет отношения к логической структуре. Но ни один человек, достаточно серьезно относящийся к математическим открытиям Гильберта и имеющий представление о его беззаветной преданности науке, не сказал бы, что этот ученый считал, будто дело его жизни – это отвлеченная игра.
ЧТО ЛОГИКА ДАЛА ИМ
Чарльз Лютвидж Доджсон, более известный как Льюис Кэрролл, использовал свои формулировки для раздела математической логики, известного нам как логика высказываний , чтобы составлять и решать логические загадки. Типичный пример такой формулировки он приводит в своем труде «Символическая логика» от 1896 г.
• Никто из тех, кто действительно ценит Бетховена, не станет шуметь во время исполнения «Лунной сонаты».
• Морские свинки безнадежно невежественны в музыке.
• Те, кто безнадежно невежествен в музыке, не станут соблюдать тишину во время исполнения «Лунной сонаты».
Вывод таков: ни одна морская свинка не ценит Бетховена. Такая форма логического построения называется силлогизмом и уходит корнями в классические труды древних греков.
Преуспев в геометрии, Гильберт обратил взор на гораздо более амбициозный проект: подвести под всю математику непоколебимый логический фундамент. Для этого он внимательно изучал труды современных ему логиков и составил подробную программу для того, чтобы раз и навсегда привести в порядок основания математики. В дополнение к доказательству того, что математика свободна от противоречий, он полагал, что нерешаемых проблем не существует в принципе и любое математическое утверждение может быть или доказано, или опровергнуто. Успех на первых порах убедил Гильберта в том, что он на верном пути и приблизился к своей основной цели.
Но нашелся всё же логик, которого так и не убедили доводы Гильберта в пользу того, что математика логически последовательна. Его звали Курт Гёдель, и его беспокойство по поводу программы Гильберта навсегда изменило наше отношение к математической истине.
До Гёделя математика просто считалась верной – и это был высший пример истины, потому что истина утверждения 2 + 2 = 4 была чем-то из сферы чистой мысли, независимой от физического мира. Математические истины не могут быть опровергнуты дальнейшими экспериментами. В этом смысле они превосходят физические истины вроде ньютоновского закона о силе гравитационного притяжения, обратно пропорциональной квадрату расстояния, опровергнутого наблюдениями за движением в перигелии Меркурия, которые подтверждают новую теорию гравитации, предложенную Эйнштейном.
Благодаря Гёделю математическая истина стала восприниматься как иллюзия. Существуют лишь математические доказательства . Их внутренняя логика может быть безупречной, но при этом они существуют в более широком контексте фундаментальной математики, где нет гарантий, что игра в целом вообще имеет смысл. Гёдель не просто предположил это, – он это доказал. По сути, два его достижения в совокупности разрушили до основания аккуратную, оптимистичную программу Гильберта.
Гёдель доказал, что если математика логически последовательна, то доказать это невозможно. И не потому, что он сам не смог найти доказательство, а потому, что доказательства не существует . И если вдруг, паче чаяния, вам удастся доказать, что математика последовательна, следом тут же придет доказательство тому, что это не так. Он также доказал, что ряд математических утверждений не могут быть ни доказаны, ни опровергнуты. И вновь не потому, что он лично не смог этого добиться, но потому, что это невозможно . Утверждения такого рода называются неразрешимыми .
Читать дальше