Гаусс оставил после себя широкий спектр работ в самых разных областях математики. Он дал первое строгое доказательство Основной теоремы алгебры о том, что любое полиномиальное уравнение имеет решения в комплексных числах. Он дал строгое определение комплексных чисел как пар действительных чисел, с которыми можно проводить определенные операции. Он доказал фундаментальную теорему комплексного анализа, известную как теорема Коши, потому что Огюстен-Луи Коши не только доказал ее независимо, но и опубликовал доказательство. В действительном анализе можно проинтегрировать некоторую функцию на определенном интервале и получить при этом площадь под соответствующей кривой. В комплексном анализе функцию можно проинтегрировать вдоль некоторой кривой на комплексной плоскости; называется такой интеграл интегралом по контуру. Гаусс и Коши доказали, что если начальные и конечные точки двух контуров совпадают, то значение интеграла по тому и другому контуру зависит только от этих точек, при условии что функция не принимает бесконечных значений ни в какой точке внутри замкнутой кривой, полученной в результате объединения двух контуров. Этот простой результат имеет глубокие следствия для соотношения между комплексной функцией и ее сингулярностями – точками, в которых она принимает бесконечные значения.
Гаусс сделал первые шаги к топологии и ввел понятие коэффициента зацепления – топологического свойства, которое часто можно использовать для доказательства того, что две сцепленные кривые невозможно расцепить при помощи непрерывной деформации. Эту концепцию позже обобщил для более высоких размерностей Пуанкаре (глава 18). Кроме того, это был первый шаг к созданию теории топологии узлов – темы, о которой Гаусс тоже размышлял и которая сегодня имеет свои приложения в квантовой теории поля и строении ДНК-молекулы.
* * *
Как директор Гёттингенской обсерватории Гаусс вынужден был посвящать много времени строительству новой обсерватории, которое завершилось в 1816 г. Не пренебрегал он и математикой: публиковал работы по бесконечным рядам и гипергеометрической функции, статью по численному анализу, кое-какие статистические идеи и работу «Теория притяжения однородного эллипсоида» о гравитационном притяжении сплошного однородного эллипсоида – лучшей аппроксимации для формы планеты, чем шар. В 1818 г. ему было поручено провести геодезическую съемку Ганновера, доработав при этом существующие методики съемки. К 1820-м гг. Гаусс заинтересовался измерением формы Земли. Ранее он доказал теорему, которую назвал Theorema Egregium (Замечательная теорема). Она характеризует форму поверхности независимо от окружающего ее пространства. За эту теорему и за проведенную геодезическую съемку в 1822 г. он был удостоен Копенгагенской премии.
В это время в семейной жизни Гаусса начался сложный период. Его мать постоянно болела, и он перевез ее к себе и поселил в своем доме. Ему предлагали пост в Берлине, и жена хотела, чтобы он согласился на этот пост, но Гаусс не хотел покидать Гёттинген. Затем, в 1831 г., его жена умерла. Побороть горе ему помог приезд физика Вильгельма Вебера. Гаусс был знаком с Вебером уже несколько лет, и они вместе работали над исследованием магнитного поля Земли. Гаусс написал на эту тему три значительные работы, изложил в них фундаментальные результаты в физике магнетизма и определил при помощи своей теории местоположение Южного магнитного полюса. Вместе с Вебером он открыл то, что мы сегодня называем законами Кирхгофа для электрических цепей. Они также построили один из первых работающих электрических телеграфов, способный посылать сообщения более чем на километр.
Когда Вебер покинул Гёттинген, математическая продуктивность Гаусса пошла на спад. Он перенес свою деятельность в финансовый сектор, организовав Вдовий фонд Гёттингенского университета. Опыт, полученный в этом деле, он употребил с пользой – и сделал себе состояние, вкладывая деньги в облигации различных компаний. Тем не менее он продолжал консультировать двух докторантов, Моритца Кантора и Ричарда Дедекинда. Последний позже описал ту спокойную и четкую манеру, в которой Гаусс вел исследовательские дискуссии; сначала участники вместе вырабатывали базовые принципы, затем он формулировал их и записывал на небольшой доске своим элегантным почерком.
Умер Гаусс очень спокойно, во сне, в 1855 г.
11. Меняя правила. Николай Иванович Лобачевский
Читать дальше
Конец ознакомительного отрывка
Купить книгу