Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков

Здесь есть возможность читать онлайн «Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент Альпина, Жанр: Математика, Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Значимые фигуры. Жизнь и открытия великих математиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Значимые фигуры. Жизнь и открытия великих математиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Значимые фигуры. Жизнь и открытия великих математиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Значимые фигуры. Жизнь и открытия великих математиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
* * *

В первой главе «Математики в девяти книгах» объясняется, как вычислять площади полей разной формы: прямоугольных, треугольных, трапецеидальных и круглых. Приведенные в ней правила верны, за исключением правила для круга. Даже здесь предложенный рецепт сам по себе верен: умножить радиус на половину длины окружности. Однако длина окружности вычисляется как утроенный диаметр, то есть, по существу, считается, что π = 3. Если говорить о практической применимости метода, то площадь круга здесь получается меньше реальной менее чем на 5 %.

В конце I в. до н. э. правитель Ван Ман велел астроному и создателю календаря Лю Синю придумать и предложить стандартную меру объема. Лю Синь изготовил очень аккуратный цилиндрический бронзовый сосуд, который и должен был служить стандартной мерой при сравнении. Тысячи копий этого сосуда использовались по всему Китаю. Оригинальный сосуд в настоящее время хранится в пекинском музее, и его размеры позволили некоторым ученым предположить, что Лю Синь, по существу, пользовался числом, близким к π и равным 3,1547. (Как именно можно получить это число с такой точностью при измерении бронзового горшка – непонятно, по крайней мере мне.) В трактате «Сюй шу» (официальная история династии Сюй) содержится утверждение, из которого можно понять, что Лю Синь действительно нашел новое значение числа π. Лю Хуэй замечает, что примерно в это же время придворный астролог Чан Хэн предложил считать π равным квадратному корню из 10, что составляет 3,1622. Ясно, что новые улучшенные значения π носились в воздухе.

В своих комментариях к «Девятикнижию» Лю Хуэй указывает, что традиционное правило «π = 3» ошибочно: вместо длины окружности оно дает периметр вписанного шестиугольника, который очевидно меньше. Затем он вычисляет более точное значение для длины окружности (и косвенно для π). Мало того, он пошел еще дальше и описал вычислительный метод оценки числа π со сколь угодно высокой точностью. Его подход напоминал подход Архимеда: аппроксимировать окружность правильными многоугольниками с 6, 12, 24, 48, 96, … сторонами. Чтобы применить метод исчерпания, Архимед использовал одну последовательность аппроксимирующих многоугольников внутри, вписывая их в окружность, а вторую – снаружи, описывая их около окружности. Ли Хуэй пользовался только вписанными многоугольниками, но в завершение расчета он привел геометрические аргументы в пользу того, чтобы определить как нижнюю, так и верхнюю границы истинного значения π. Этот метод позволяет получить сколь угодно точное приближение к π, не используя ничего сложнее квадратных корней. Для вычисления квадратных корней существует формализованный метод, трудоемкий, но не более сложный, чем умножение в столбик. Умелый расчетчик вполне мог бы за один день получить десять десятичных знаков π.

Позже, около 469 г., Цзу Чунчжи расширил этот расчет и показал, что

3,1415926 < π < 3,1415927.

Результат был записан и сохранился, а вот метод, изложенный, возможно, в его потерянной работе «Чжуй шу» – «Метод интерполяции», до нас не дошел. Вероятно, это было сделано путем продолжения расчетов Лю Хуэя, но заголовок трактата позволяет предположить, что речь шла, скорее, о получении более точного результата из пары приближений, одно из которых слишком мало, а другое – слишком велико. Подобные методы можно найти в математике и сегодня. Не так давно им учили в школах, чтобы использовать таблицы логарифмов. Цзу предложил две простые дроби, приближенно выражающие: это Архимедова дробь 22/7, равная π с точностью до двух знаков после запятой, и 355/113, равная π с точностью до десяти знаков. Первое значение и сегодня широко используется, второе тоже хорошо известно математикам.

* * *

Одна из реконструкций доказательства теоремы Пифагора, принадлежащего Лю Хуэю и восстановленного на базе текстовых указаний в его книге, представляет собой хитроумное и необычное рассечение. Собственно прямоугольный треугольник, о котором идет речь, показан на рисунке черным. Квадрат, построенный на одном из его катетов (светло-серый), рассечен надвое диагональю. Квадрат, построенный на другом катете, разрезан на пять частей: один маленький квадратик (темно-серый), пара симметрично расположенных треугольников (средне-серых) тех же формы и размера, что и первоначальный прямоугольный треугольник, и пара симметрично расположенных треугольников (белых), заполняющих оставшееся место. После этого все семь кусочков собираются воедино и образуют квадрат на гипотенузе.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков»

Представляем Вашему вниманию похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков»

Обсуждение, отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x