Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков

Здесь есть возможность читать онлайн «Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент Альпина, Жанр: Математика, Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Значимые фигуры. Жизнь и открытия великих математиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Значимые фигуры. Жизнь и открытия великих математиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Значимые фигуры. Жизнь и открытия великих математиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Значимые фигуры. Жизнь и открытия великих математиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Его книгу «Аль-китаб аль-мухтасар фи хисаб аль-джебр ва-ль-мукабала» («Краткая книга об исчислении алгебры и аль-мукабалы»), написанную около 830 г., Роберт Честерский в XII в. перевел на латынь с названием Liber Algebrae et Almucabola. В результате аль-джебр, латинизированное до algebra, стало самостоятельным словом. Теперь оно означает использование таких символов, как x и y , для неизвестных величин, а также методы отыскания этих неизвестных путем решения уравнений, но в самой книге никакие символы не используются.

* * *

«Алгебра» была написана, когда халиф аль-Мамун предложил аль-Хорезми написать популярную книгу о вычислениях. Сам автор описывает ее цель так:

…здесь содержится простейшее и полезнейшее в арифметике, постоянно необходимое людям в случаях наследования, завещаний, раздела имущества, судебных тяжб и торговли и в любых сделках друг с другом или когда речь идет об измерении земель, рытье каналов, геометрических расчетах и других вещей разных сортов и типов.

Все это не слишком похоже на книгу по алгебре. И правда, непосредственно алгебра занимает в ней лишь небольшую часть. Аль-Хорезми начинает с объяснения чисел в очень простых выражениях – единицы, десятки, сотни – на том основании, что «когда я думаю о том, в чем люди обычно нуждаются при расчетах, я понимаю, что это всегда число». Вообще, это не ученый трактат для мужей науки, но популярная математическая книга, практически учебник, который пытается не только информировать, но и обучать обычных читателей. Именно этого хотел халиф, и именно это он получил. Аль-Хорезми не рассматривал свою книгу как результат работы на переднем крае исследовательской математики. Но мы сегодня именно так смотрим на ту ее часть, которая посвящена аль-джебре. Это самый глубокий раздел книги: систематическое развитие методов решения уравнений с некоторой неизвестной величиной.

Собственно термин «аль-джебр», который обычно переводят как «дополнение», относится к приему добавления одного и того же слагаемого к обеим частям уравнения с целью его упрощения. «Аль-мукабала», или «уравновешивание», относится к переносу одного из слагаемых с одной стороны уравнения на другую сторону (но с противоположным знаком) и к сокращению подобных членов в обеих частях уравнения.

К примеру, если уравнение в современной символьной записи выглядит как

x – 3 = 7,

то аль-джебра разрешает нам добавить по 3 к обеим сторонам уравнения и получить

x = 10,

что в данном случае решает уравнение. Если уравнение выглядит как

2 x 2+ x + 6 = x 2+ 18,

то аль-мукабала позволяет нам перенести 6 с левой стороны уравнения на правую, только со знаком минус, и получить

2 x 2+ x = x 2+ 12.

Вторая аль-мукабала позволяет нам перенести x 2из правой части уравнения в левую и вычесть уже его, получив

x 2+ x = 12,

что проще, но еще не дает решение уравнения.

Я повторю, что аль-Хорезми не использует никаких символов . Отец алгебры на самом деле не делал ничего из того, что сегодня большинство из нас считает алгеброй. Он все описывал словами. Конкретные числа были единицами , неизвестная величина, которую мы называем x , называлась у него корнем , а наш x 2назывался квадратом . Приведенное уравнение в этих терминах выглядело бы так:

квадрат плюс корень равно двенадцать единиц ,

и без всяких символов. Так что следующая задача – объяснить, как от уравнения подобного типа перейти к ответу. Аль-Хорезми подразделяет уравнения на шесть типов, причем типичный случай представляет собой «квадраты и корни равняются числам», то есть что-то вроде x 2+ x = 12.

Затем он переходит к анализу каждого типа уравнений по очереди причем решает - фото 11

Затем он переходит к анализу каждого типа уравнений по очереди, причем решает их с использованием смеси алгебраических и геометрических методов. Так, чтобы решить уравнение x 2+ x = 12, аль-Хорезми рисует квадрат, который должен представлять x 2(левый рисунок). Чтобы прибавить к этому корень x , он пририсовывает к квадрату четыре прямоугольника, каждый со сторонами x и картинка 12(средний рисунок). Получившаяся фигура наводит на мысль «завершить квадрат», присоединив сюда же четыре «уголка» – маленькие квадратики со стороной Значимые фигуры Жизнь и открытия великих математиков - изображение 13и площадью Значимые фигуры Жизнь и открытия великих математиков - изображение 14 Так что он добавляет Значимые фигуры Жизнь и открытия великих математиков - изображение 15к левой части уравнения (правый рисунок). По правилу аль-джебр он должен также прибавить и к правой части уравнения то в результате чего справа становится Теперь - фото 16и к правой части уравнения то, в результате чего справа становится Значимые фигуры Жизнь и открытия великих математиков - изображение 17 Теперь

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков»

Представляем Вашему вниманию похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков»

Обсуждение, отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x