Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков

Здесь есть возможность читать онлайн «Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент Альпина, Жанр: Математика, Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Значимые фигуры. Жизнь и открытия великих математиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Значимые фигуры. Жизнь и открытия великих математиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Значимые фигуры. Жизнь и открытия великих математиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Значимые фигуры. Жизнь и открытия великих математиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
* * *

Сегодня многие математики пользуются компьютерами не только для переписки по электронной почте и путешествий по сети, даже не только для больших численных вычислений, но как инструментом, который помогает им исследовать различные задачи почти экспериментальным методом. В самом деле, время от времени появляются доказательства, полученные при помощи компьютеров, часто в связи с важными задачами, не поддавшимися пока традиционным методам атаки при помощи ручки, бумаги и человеческого разума. Столь спокойное отношение к компьютерам стало распространенным относительно недавно; дело не в том, что математики все такие ретрограды и сопротивляются внедрению новых технологий, но прежде возможности компьютеров были слишком ограниченными как по скорости, так и по объему памяти. Серьезная математическая задача может оказаться неподъемной даже для самого быстрого суперкомпьютера; в одном недавнем исследовании результат компьютерного расчета, если бы его полностью распечатали, оказался бы размером с Манхэттен.

Возродив трехмерную гиперболическую геометрию, Тёрстон одним из первых воспользовался компьютером на переднем крае геометрии. В конце 1980-х гг. Национальный фонд развития науки выделил средства на новый Центр геометрии в Миннесотском университете, где проводились исследовательские встречи и публичные информационные мероприятия. Кроме того, Центр продвигал использование компьютерной графики, и два его видео получили значительную известность. Они и сейчас доступны в сети, хотя сам Центр прекратил существование. В первом из них [35] https://www.youtube.com/watch?v=zd_HGjH7QZo – «Не узел» (Not Knot) – зритель пролетает рядом с различными трехмерными гиперболическими многообразиями, открытыми Тёрстоном. Сложная и захватывающая графика фильма оказалась настолько психоделической, что группа Greatful Dead использовала ее на своих концертах. Второе видео [36] https://www.youtube.com/watch?v=wO61D9x6lNY – «Наизнанку» (Outside In) – представляет собой анимацию замечательной теоремы, которую еще студентом в 1957 г. открыл Смейл. Речь в ней идет о том, что можно вывернуть сферу наизнанку.

Представьте себе сферу, внешняя сторона которой покрашена в золотистый цвет, а внутренняя – в пурпурный. Конечно, ее можно вывернуть наизнанку, сделав отверстие и протолкнув в него всю сферу, но это не есть топологическое преобразование. Этот фокус невозможно проделать с реальной сферой, такой как воздушный шарик (хотя доказательство этого не полностью очевидно), но математически мы можем разрешить преобразование, при котором сфера проходит сквозь саму себя, что невозможно проделать с шариком. Итак, мы можем попробовать толкать сферу с противоположных сторон, в результате чего через золотистую поверхность проступят два пурпурных пузыря, но при этом посередине между ними останется все сильнее сжимающееся трубчатое золотистое кольцо. Когда это кольцо сожмется в окружность, поверхность перестанет быть гладкой. Теорема Смейла гласит, что этого можно избежать: существует преобразование, такое, что на всех его этапах сфера гладко встроена в пространство, хотя, возможно, и прорезает саму себя. Долгое время эта теорема оставалась всего лишь доказательством существования: никто не знал, как на самом деле это можно сделать. Затем некоторые топологи разработали несколько различных методов; причем один из ученых, Бернар Морен, ослеп в возрасте шести лет. Самый элегантный и симметричный метод принадлежит Тёрстону, и этот метод – настоящая звезда видеосюжета «Наизнанку».

Тёрстон повлиял на восприятие математики обществом и другими способами. Он писал о том, каково на самом деле быть математиком и что он думает об исследовательских задачах; он пытался дать обычным людям возможность увидеть жизнь математика изнутри. Когда дизайнер модной одежды Дай Фудзивара услышал о восьми геометриях, он связался с Тёрстоном, и их общение привело к рождению широкого спектра образцов женской моды.

Вклад Тёрстона во многие области геометрии, от топологии до динамики, обширен. Его деятельность отличалась замечательным свойством визуализировать сложные математические понятия. Когда у него спрашивали доказательство, Тёрстон обычно рисовал картинку. Зачастую его рисунки раскрывали скрытые связи, не замеченные другими исследователями. Еще одной характерной чертой Тёрстона было его отношение к доказательствам: он часто оставлял детали за скобками, поскольку они представлялись ему очевидными. Когда кто-то просил его объяснить непонятое доказательство, он нередко тут же, на месте, придумывал новое и говорил: «Возможно, это вам больше понравится». Для Тёрстона вся математика была единым взаимосвязанным целым, и он знал ее, как другие знают собственный огород.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков»

Представляем Вашему вниманию похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков»

Обсуждение, отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x