Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков

Здесь есть возможность читать онлайн «Иэн Стюарт - Значимые фигуры. Жизнь и открытия великих математиков» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент Альпина, Жанр: Математика, Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Значимые фигуры. Жизнь и открытия великих математиков: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Значимые фигуры. Жизнь и открытия великих математиков»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Значимые фигуры. Жизнь и открытия великих математиков — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Значимые фигуры. Жизнь и открытия великих математиков», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
* * *

В 1974 г. Тёрстон стал профессором Принстонского университета (не путать с Институтом высших исследований, в котором не учат студентов). Несколько лет спустя фокус его исследований переместился в одну из самых сложных областей топологии – к исследованию трехмерных многообразий. Эти пространства аналогичны поверхностям, но имеют одно дополнительное измерение. Их исследование начал более 100 лет назад Пуанкаре (глава 18), но, пока в дело не вступил Тёрстон, они ставили всех в тупик. Топология многообразий высоких размерностей достаточно любопытна. Простейшие размерности – один (это тривиально) и два (это поверхности, и решается все классически). Следующими по простоте оказались размерности пять и выше – в основном потому, что в пространствах высоких размерностей хватает простора для сложных маневров. Но даже в этом случае задачи сложны. Еще сложнее четырехмерные многообразия, а самые сложные – трехмерные многообразия; места в них достаточно для громадной сложности, но не хватает для упрощения сколько-нибудь простым и понятным способом.

Стандартный способ построения n -мерного многообразия – взять небольшие кусочки n -мерного пространства и сформулировать правила, по которым их надлежит склеивать. Концептуально, а не на самом деле. В главе 18 мы видели, как работает этот подход для поверхностей и трехмерных многообразий. Мы также встречали уже фундаментальный вопрос топологии трехмерных многообразий – гипотезу Пуанкаре. В ней трехмерная сфера характеризуется при помощи простого топологического свойства: любые петли на ней без помех сжимаются в точку. Стандартный способ подвести слушателей к подобному вопросу состоит в том, чтобы обобщить его на аналоги с бо́льшим числом измерений. Иногда более общий вопрос оказывается и более простым; тогда вы заодно получаете и решение частного случая, с которого все началось. Первоначально прогресс выглядел обнадеживающе. В 1961 г. Стивен Смейл доказал гипотезу Пуанкаре для всех размерностей, больших или равных 7. Затем Джон Столлингс разобрался с размерностью 6, а Кристофер Зееман – с размерностью 5. Их методы не сработали для размерностей 3 и 4, и топологи начали задумываться: не может ли оказаться, что эти размерности ведут себя иначе? Затем, в 1982 г., Майкл Фридман нашел чрезвычайно сложное доказательство четырехмерной гипотезы Пуанкаре с использованием радикально иных методов. На этом этапе гипотеза Пуанкаре оказалась доказана для всех размерностей, за исключением лишь одной, к которой изначально относился заданный Пуанкаре вопрос. Но методы топологов не пролили никакого света на этот последний оставшийся случай.

И тут на сцене появляется Тёрстон и переворачивает ситуацию с ног на голову.

Топология – это геометрия резинового листа, и вопрос Пуанкаре был топологическим. Естественно, все пытались искать ответ на него топологическими методами. Тёрстон же выбросил пресловутый резиновый лист и подумал: а не геометрической ли на самом деле является эта задача? Он не решил ее, но через несколько лет его идеи вдохновили молодого российского математика Григория Перельмана на ее решение.

Вспомним (глава 11), что существует три вида геометрии: Евклидова, эллиптическая и гиперболическая. Это геометрии пространств с нулевой, постоянной положительной и постоянной отрицательной кривизной соответственно. Тёрстон начал с любопытного факта, который кажется почти случайным. Он заново вспомнил классификацию поверхностей – сфера, тор, 2-тор, 3-тор и т. д., как в главе 18, – и задался вопросом: какие типы геометрии здесь встречаются? Сфера имеет постоянную положительную кривизну, так что ее естественная геометрия – эллиптическая. Одна из реализаций тора – плоский тор – представляет собой квадрат, противоположные стороны которого отождествляются. Квадрат – плоский объект на плоскости, так что его естественная геометрия – Евклидова, а правила склеивания придают плоскому тору тот же самый тип геометрии, каким обладает квадрат. Наконец, хотя это и не так очевидно, естественной геометрией любого тора с двумя или более отверстиями является гиперболическая геометрия. Как-то так получается, что гибкая топология поверхностей сводится к жесткой геометрии – и при этом возникает все три возможных варианта.

Разумеется, поверхности – особый случай, но Тёрстон заинтересовался: не происходит ли чего-то подобного и с трехмерными многообразиями? Поразительная геометрическая интуиция помогла ему быстро понять, что ситуация не может быть настолько простой. Некоторые трехмерные многообразия, такие как плоский тор, являются Евклидовыми. Другие, такие как 3-сфера, – эллиптическими. Есть и гиперболические. Но большинство трехмерных многообразий не относится ни к первым, ни ко вторым, ни к третьим. Тёрстон, не утратив присутствия духа, попытался разобраться почему и обнаружил две причины. Во-первых, для трехмерных многообразий существует восемь разумных геометрий. Одна из них, к примеру, аналогична цилиндру: плоская в одних направлениях и положительно искривленная в других. Второе препятствие более серьезно: многие 3-многообразия до сих пор не изучены. Однако работающий метод, по всей видимости, представлял собой своего рода эффект мозаики. Любое 3-многообразие, судя по всему, строится из кусочков, каждый из которых характеризуется естественной геометрией одного из уже упомянутых восьми возможных типов. Более того, кусочки должны быть не какими попало: их можно выбрать так, чтобы они стыковались между собой строго определенным образом. Эти идеи заставили Тёрстона в 1982 г. озвучить свою гипотезу геометризации: любое трехмерное пространство может быть разрезано единственным, по существу, образом на куски, каждый из которых обладает естественной геометрической структурой, задаваемой одной из восьми его геометрий. Гипотеза Пуанкаре для 3-многообразий – простое следствие из этой гипотезы. Но дальше дело застопорилось. Математический институт Клэя назвал гипотезу Пуанкаре одной из задач, за решение которых была объявлена Премия тысячелетия: за ее доказательство полагался приз в $1 млн.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков»

Представляем Вашему вниманию похожие книги на «Значимые фигуры. Жизнь и открытия великих математиков» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков»

Обсуждение, отзывы о книге «Значимые фигуры. Жизнь и открытия великих математиков» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x