Хорди Деулофеу - Дилемма заключенного и доминантные стратегии. Теория игр

Здесь есть возможность читать онлайн «Хорди Деулофеу - Дилемма заключенного и доминантные стратегии. Теория игр» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2014, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Дилемма заключенного и доминантные стратегии. Теория игр: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Дилемма заключенного и доминантные стратегии. Теория игр»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий?
Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.

Дилемма заключенного и доминантные стратегии. Теория игр — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Дилемма заключенного и доминантные стратегии. Теория игр», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Математика и ожидание

Одно из наиболее важных понятий, которое следует учитывать, принимая решения в азартных играх, — математическое ожидание. Перед тем как дать этому термину точное определение, рассмотрим несколько примеров. Допустим, нам предлагают сыграть в такую игру: бросают две монеты, если выпадает две решки, выигрыш равен 4 евро, если выпадает два орла — 1 евро, если выпадает орел и решка — мы проигрываем 3 евро. Стоит ли играть по таким правилам? Сколько мы надеемся выиграть (или проиграть)?

При броске двух монет имеется четыре возможных результата: две решки (р = 1/4), два орла (р = 1/4), орел и решка (р = 1/4), решка и орел (р = 1/4). Каждые четыре броска в среднем один раз выпадут две решки, один раз — два орла и два раза — орел и решка. Следовательно, в среднем наш выигрыш составит 1 • 4 + 1 • 1 + 2 • (—3) = -1 евро. Это означает, что играть невыгодно и в среднем каждые четыре броска мы будем проигрывать 1 евро, то есть 25 центов за игру. Аналогичный результат можно получить, умножив вероятности для каждого исхода на соответствующий выигрыш (или проигрыш, который будет выражаться отрицательным числом) и сложив полученные результаты. В таком случае получим

1/4.4 + 1/4.1 + 1/2 • (-3) = -1/4 евро.

Рассмотрим второй пример. В игре с обычным кубиком банк платит 6 фишек, если выпадает шестерка, 4 фишки, если выпадает нечетное число, в остальных случаях мы не получаем ничего. Сколько нужно ставить в каждом розыгрыше, чтобы игра была сбалансированной?

Учитывая, что р(6) = 1/6 и р(нечетное число) = 1/2, в каждом розыгрыше мы ожидаем выиграть 1/6•6 + 1/2•4 + 1/3•0 = 3 фишки. Следовательно, игра будет равновесной (ни банк, ни игрок не будут иметь преимущества), если каждая ставка будет равняться 3 фишкам.

Эти примеры позволяют нам ввести понятия математического ожидания и равновесных игр, а также привести их определения в общем виде. Пусть имеются события S 1S 2, S 3..., S n, являющиеся попарно несовместными (ни одно из событий не может произойти одновременно с другим), которые могут произойти в азартной игре. Вероятности событий равны р 1р 2, р 3..., р n(выполняется условие p 1+ p 2+ p 3+ … + р n= 1), суммы ставок соответственно равны r 1, r 2, r 3..., r n. Ожидаемый выигрыш или математическое ожидание М [X] игры или случайного события, где результатом является одно из событий S 1, S 2, S 3, ..., S n, определяется следующим образом:

М [X] = р 1• r 1+ р 2• r 2+ р 3• r 3+ ... + p n• r n.

На основании этого определения говорят, что игра является справедливой (или равновесной), если математическое ожидание (средний выигрыш на каждом ходу) совпадает с суммой сделанной ставки. Также говорят, что общее математическое ожидание игры (ожидаемая сумма выигрыша минус сумма сделанных ставок) равна 0.

Рассмотрим, как можно определить еще одним способом, является ли азартная игра равновесной, с помощью математического ожидания.

Игра с тремя кубиками

Игра заключается в следующем: игрок ставит 1 евро на число от 1 до 6, например на 3. Затем бросают три обычных кубика. Если 3 выпадает один раз, выигрыш составляет 1 евро, если 3 выпадает два раза, выигрыш равен 2 евро, если выпадает три раза — 3 евро. Кроме этого, при каждом выигрыше игроку возвращается сумма сделанной ставки в 1 евро. Если ни на одном из кубиков не выпадает 3, игрок проигрывает свою ставку в 1 евро. Является ли игра равновесной, либо же одна из сторон имеет преимущество?

Хотя на первый взгляд может показаться, что преимущество имеет игрок, на самом деле все по-другому. Можно рассуждать так: поскольку бросают три кубика и вероятность того, что выпадет заданное число, равна 1/6 для каждого кубика, вероятность выигрыша составляет как минимум 1/2. Но, кроме этого, есть вероятность того, что выбранное число выпадет два или даже три раза, поэтому шансы игрока на победу выше.

Однако подобное рассуждение неверно. Существует 216 возможных исходов (6*6* 6). Лишь в одном случае (р = 1/216) загаданное число выпадет три раза, в 15 случаях — дважды (р = 15/216), и в 75 случаях игрок получит сумму, равную ставке (р = 75/216). Следовательно, в 125 случаях (216 - 1 - 15 - 75) игрок теряет свою ставку.

Заметим, что исходов, когда игрок проигрывает (125), больше, чем тех, когда он выигрывает (91). Если вычислить математическое ожидание для ставки в 1 евро, получим:

3 • 1/216 + 2 • 15/216 + 1 • 75/216 - 1 • 125/216 = 108/216 - 125/216 = -17/216 = -0,0787...

Следовательно, преимущество имеет банк, который в среднем выигрывает почти 8 центов с каждого поставленного евро.

Несмотря на то что мы описали математическое ожидание на примере азартных игр, это понятие применимо к различным случайным событиям, которые порой не имеют ничего общего с азартными играми, как в следующем примере.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Дилемма заключенного и доминантные стратегии. Теория игр»

Представляем Вашему вниманию похожие книги на «Дилемма заключенного и доминантные стратегии. Теория игр» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Дилемма заключенного и доминантные стратегии. Теория игр»

Обсуждение, отзывы о книге «Дилемма заключенного и доминантные стратегии. Теория игр» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x