Хорди Деулофеу - Дилемма заключенного и доминантные стратегии. Теория игр

Здесь есть возможность читать онлайн «Хорди Деулофеу - Дилемма заключенного и доминантные стратегии. Теория игр» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2014, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Дилемма заключенного и доминантные стратегии. Теория игр: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Дилемма заключенного и доминантные стратегии. Теория игр»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий?
Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.

Дилемма заключенного и доминантные стратегии. Теория игр — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Дилемма заключенного и доминантные стратегии. Теория игр», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В этой главе мы говорили о стратегических играх, а именно о тех, которые можно полностью проанализировать. Мы увидели, как математика помогает найти выигрышную стратегию для одного из игроков, если такая стратегия существует. Такие эвристические методы, как изучение частных случаев; предположение, что игра завершена, и рассуждение в обратном направлении; использование симметрии, применяются при решении математических задач и полезны при анализе игр подобного типа. Как только для игры найдена выигрышная стратегия, это уже не игра, а решенная математическая задача.

В общих чертах проанализированные игры принадлежат к играм типа Ним, где важно количество фишек, и к играм типа Нимбус, где, помимо количества, также важно расположение фишек, поэтому выигрышные стратегии для игр типа Ним здесь неприменимы. В целом стратегии для игр типа Нимбус определять сложнее.

Глава 3. Игры и азарт

Где заканчивается игра и начинается серьезная математика? <...> Для многих математика смертельно скучна и не имеет ничего общего с играми. Напротив, для большинства математиков это всегда игра, а также многое, многое другое.

Мигель де Гусман

В этой главе речь пойдет о взаимосвязи игр и вероятностей. Она стала очевидной сразу же, как только люди поняли возможность моделирования хаотических, случайных процессов. До этого в математике всегда говорилось о чем-то определенном, правильном, в чем можно быть уверенным. Можно сказать, что, когда были определены способы вычисления вероятностей, в математике началась новая эпоха. Этот раздел математики приобретал все большую важность по мере того, как становились известными все новые и новые области его применения. С приходом XX века предметами изучения и математического моделирования стали не только случайные процессы, но и хаос или нерегулярность фракталов.

Шевалье, который не хотел проигрывать. Азартные игры и появление вероятностей

В реальном мире сложные теории, касающиеся вероятностей, применяются в самых разных областях, так как в нашей жизни неопределенность встречается очень часто. Однако теория вероятностей берет свое начало именно в азартных играх. Можно утверждать, что теория случайных событий, основанная на понятии вероятности, начала формироваться во Франции в середине XVII века, в частности в 1654 году, в переписке Блеза Паскаля и Пьера Ферма, которые обсуждали вопросы, поставленные шевалье де Мере. Этот дворянин, знаток азартных игр, попросил Паскаля объяснить результаты некоторых азартных игр с игральными костями.

Антуан Гомбо, известный как шевалье де Мере (род. в Пуату, 1607—1685), посвятил большую часть жизни азартным играм и их анализу. Его интуитивные догадки много раз оказывались верными. По-видимому, он заработал приличную сумму различными азартными играми, где вероятность выигрыша и проигрыша одинакова. Например, такой считалась игра, где нужно было выбросить минимум одну шестерку броском четырех игральных костей. Однако Мере знал, что в этой игре один из игроков имеет преимущество. Он предложил новую игру, в которой требовалось минимум один раз выбросить две шестерки за 24 броска двух костей. Де Мере полагал, что преимущество одного из игроков здесь будет таким же, что и в исходной игре. Некоторое время спустя он убедился, что в действительности все происходит с точностью до наоборот. Поэтому примерно в 1654 году он обратился к Паскалю, чтобы тот нашел ошибку в его рассуждениях и объяснил, почему в новой игре у него не было преимущества.

Иллюстрация из Книги игр Альфонсо X Мудрого на которой изображена игра в - фото 39

Иллюстрация из «Книги игр» Альфонсо X Мудрого, на которой изображена игра в кости.

БЛЕЗ ПАСКАЛЬ (1623-1662)

Несмотря на смерть в раннем возрасте этот французский ученый математик и - фото 40

Несмотря на смерть в раннем возрасте, этот французский ученый, математик и философ внес большой вклад в различные сферы науки и человеческой мысли. Он был вундеркиндом и уже в И лет участвовал в научных встречах, которые организовывал Марен Мерсенн. В 1640 году Паскаль публикует работу «Опыт о конических сечениях», в 1649 году подтверждает результаты работ Торричелли об атмосферном давлении. В 1642 году он сконструировал счетную машину, чтобы помочь отцу, сборщику налогов в Нормандии. Эта машина, получившая название паскалина, — одна из первых рабочих счетных машин. Некоторые экземпляры сохранились до наших дней и демонстрируются в музеях науки и техники. Счетная машина, предназначенная для расчетов в торговле, заинтересовала многих — от королевы Швеции Кристины до философа Готфрида Вильгельма Лейбница, который усовершенствовал машину Паскаля.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Дилемма заключенного и доминантные стратегии. Теория игр»

Представляем Вашему вниманию похожие книги на «Дилемма заключенного и доминантные стратегии. Теория игр» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Дилемма заключенного и доминантные стратегии. Теория игр»

Обсуждение, отзывы о книге «Дилемма заключенного и доминантные стратегии. Теория игр» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x