Ласло Мерё - Логика чудес. Осмысление событий редких, очень редких и редких до невозможности

Здесь есть возможность читать онлайн «Ласло Мерё - Логика чудес. Осмысление событий редких, очень редких и редких до невозможности» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: КоЛибри, Азбука-Аттикус, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Логика чудес. Осмысление событий редких, очень редких и редких до невозможности
  • Автор:
  • Издательство:
    КоЛибри, Азбука-Аттикус
  • Жанр:
  • Год:
    2019
  • Город:
    Москва
  • ISBN:
    978-5-389-17644-7
  • Рейтинг книги:
    5 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Логика чудес. Осмысление событий редких, очень редких и редких до невозможности: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Логика чудес. Осмысление событий редких, очень редких и редких до невозможности»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Мы живем в мире гораздо более турбулентном, чем нам хотелось бы думать, но наука, которую мы применяем для анализа экономических, финансовых и статистических процессов или явлений, по большей части игнорирует важную хаотическую составляющую природы мироздания. Нам нужно привыкнуть к мысли, что чрезвычайно маловероятные события — тоже часть естественного порядка вещей. Выдающийся венгерский математик и психолог Ласло Мерё объясняет, как сосуществуют два мира, «дикий» и «тихий» (которые он называет Диконией и Тихонией), и показывает, что в них действуют разные законы. Он утверждает, что, хотя Вселенная, в которой мы живем, по сути своей дика, нам выгоднее считать, что она подчиняется законам Тихонии. Это представление может стать самоисполняющимся пророчеством и создать посреди чрезвычайно бурного моря островок предсказуемости. Делая обзор с зыбких границ между экономикой и теорией сложности, Мерё предлагает распространить область применения точных наук на то, что до этого считалось не поддающимся научному анализу: те непредсказуемые, неповторимые, в высшей степени маловероятные явления, которые мы обычно называем чудесами.
Если вы примете приглашение Ласло Мерё, вы попадете в мир, в котором чудеса — это норма, а предсказуемое живет бок о бок с непредсказуемым. Попутно он раскрывает секреты математики фондовых рынков и объясняет живо, но математически точно причины биржевых крахов и землетрясений, а также рассказывает, почему в «черных лебедях» следует видеть не только бедствия, но и возможности.
(Альберт-Ласло Барабаши, физик, мировой эксперт по теории сетей)

Логика чудес. Осмысление событий редких, очень редких и редких до невозможности — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Логика чудес. Осмысление событий редких, очень редких и редких до невозможности», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чем меньше фактор Мандельброта безмасштабной сети, тем более распределение связей между ее вершинами приближается к распределению Гаусса. Другими словами, малые значения фактора Мандельброта соответствуют более тихим сетям. Тем не менее безмасштабная сеть никогда не бывает настолько тихой, чтобы стать предсказуемой; она всегда остается хаотичной. Тихая безмасштабная сеть описывает сравнительно тихий хаос. Верно и обратное: чем больше фактор Мандельброта сети, тем ближе распределение связей между ее вершинами оказывается к распределению Коши. Это означает, что в более диких сетях узлы крупнее, чем в более тихих.

Илл 21Сравнение распределений Гаусса и Коши График Йожефа Бенце Переход - фото 22

Илл. 21.Сравнение распределений Гаусса и Коши

(График Йожефа Бенце)

Переход между распределениями Гаусса и Коши становится особенно интересным, если попытаться выяснить, имеет ли промежуточное распределение стандартное отклонение. Из того, о чем мы говорили раньше, мы помним, что у распределения Гаусса есть стандартное отклонение, а у распределения Коши его нет. Математически доказано, что у масштабно-инвариантных распределений, фактор Мандельброта которых меньше 1, есть хорошо определенное стандартное отклонение, а те, фактор Мандельброта которых больше или равен 1, его не имеют [101] Для читателей, более искушенных в математике, уточним, что фактор Мандельброта, равный 1, соответствует показателю Парето, равному 2. . Это показывает, что весь диапазон от тихого до дикого действительно занимают безмасштабные сети. Тем не менее всякая безмасштабная сеть хаотична.

В главе 7, которая называлась «Математика непредсказуемого», я дал очень узкое определение хаоса и отметил, что существуют объекты даже более хаотичные, чем те, которые удовлетворяют нашему определению хаоса. То же можно сказать и о безмасштабных сетях. Если, например, число соединений, исходящих из каждой вершины, определяет наша снайпер Фиби, то сеть уже не будет ни безмасштабной, ни хаотической в смысле нашего определения. Получится нечто гораздо более беспорядочное. Как мы увидим в дальнейшем, в реальном мире существуют сети, не относящиеся к безмасштабным и гораздо более хаотические, чем те, которые к этому разряду относятся.

Хаос тихий и хаос дикий

Масштабно-инвариантный мир хаотичен по самой своей природе, так что ему определенно нет места в Тихонии. Как мы видели, масштабная инвариантность бывает свойственна не только сетям, но и облакам, снежинкам, кротовым ходам, папоротнику, готической архитектуре, финансовым рынкам и многим другим природным и социальным явлениям. По сравнению с Тихонией масштабно-инвариантный мир хаотичен, непредсказуем и экстремален, даже в самой «тихой» своей форме, а именно в ситуациях, в которых фактор Мандельброта близок к 0. В то же время самые «дикие» формы масштабной инвариантности, с фактором Мандельброта, равным 2 или даже больше того, представляют собой сравнительно тихие формы Диконии. По меньшей мере в них действует некий руководящий принцип — масштабная инвариантность.

Масштабно-инвариантному миру присуща своего рода умеренная или тихая дикость : в нем уже не действуют законы Тихонии, но и полноценная дикость Диконии до некоторой степени сдерживается организующим принципом. Более того, и в этом тихо-диком мире есть части более тихие и более дикие. В более тихих частях фактор Мандельброта меньше 1, в то время как у более диких, в которых этот фактор больше 1, даже нет стандартного отклонения. Если фактор Мандельброта α меньше 1, то, по мере того как мы исследуем связи некой вершины, потом — связи всех вершин, соединенных с первой, потом — связи каждой новой вершины и так далее, доля известных нам вершин растет и асимптотически приближается к 100 %. Чем меньше значение α, тем быстрее наше знание о сети приближается к стопроцентному.

Если α = 1, наше знание о данной вершине остается постоянным: доля неизвестных нам связей остается приблизительно неизменной, и число открытых новых вершин приблизительно равно числу вершин уже исследованных.

Если α > 1, то чем больше связей какой-либо вершины мы исследуем, тем больше становится доля еще не исследованных вершин. Доля известных нам соединений падает и асимптотически приближается к 0 %, потому что у вершины обнаруживаются все новые и новые связанные вершины, по большей части нам неизвестные, причем быстрее, чем мы успеваем их исследовать. Чем больше значение α, тем быстрее доля известного нам приближается к 0 %.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Логика чудес. Осмысление событий редких, очень редких и редких до невозможности»

Представляем Вашему вниманию похожие книги на «Логика чудес. Осмысление событий редких, очень редких и редких до невозможности» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Айзек Азимов - Логика есть логика
Айзек Азимов
Отзывы о книге «Логика чудес. Осмысление событий редких, очень редких и редких до невозможности»

Обсуждение, отзывы о книге «Логика чудес. Осмысление событий редких, очень редких и редких до невозможности» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x