Однако для доходов чрезвычайно высоких формула Парето дает лучшее приближение, чем логнормальное распределение, о котором мы весьма подробно говорили в главе 5. Средние и низкие доходы хорошо моделируются логнормальной кривой, и даже доходы сравнительно высокие с хорошей точностью можно считать распределенными логнормально, но с необычайно высокими доходами дело обстоит иначе. Это явление заставляет предположить, что, хотя доходы по большей части относятся к миру Тихонии, высокие доходы существуют по законам Диконии.
Американский экономист Эдвард Пол Лейзир предложил удивительное объяснение этого явления [99] Lazear (1997).
. Чрезвычайно высокие доходы, утверждал он, определяются совершенно другими факторами, нежели доходы более низкие. Генеральный директор крупной фирмы зарабатывает $10 млн в год не потому, что он приносит фирме такую высокую прибыль. Его зарплата устанавливается на столь высоком уровне, чтобы стимулировать конкуренцию среди сотрудников высшего эшелона — потому что один из них, возможно, в один прекрасный день станет новым генеральным директором, — и это побуждает их работать с максимальной отдачей. Таким образом, генеральный директор получает свою астрономическую зарплату не потому, что лично ее заработал, и даже не потому, что лично мотивирует других работников, а в качестве награды за победу в соревновании за положение вожака стаи. Если высокая зарплата гендиректора действительно мотивирует нижестоящих сотрудников, это делает ее целесообразной с точки зрения акционеров, даже если сам директор мало что делает в интересах фирмы, — хотя благодаря тем качествам, которые потребовались ему для достижения этой должности, он, скорее всего, все равно служит на благо компании.
Даже если Лейзир прав и генеральным директорам назначают такие большие зарплаты, чтобы стимулировать конкуренцию среди руководителей чуть более низкого эшелона, вероятно, существует и еще одна сила, поднимающая эти зарплаты до столь астрономических уровней. Как мы видели в предыдущей главе, одна только экстремально обостренная конкуренция легко может создать диконские условия. Конкуренция, порожденная несколько более высокими зарплатами генеральных директоров, может привести к появлению еще более высоких зарплат генеральных директоров, что порождает еще более острую конкуренцию, которая приводит к еще большему увеличению зарплат. В то же время зарплаты большинства работников устанавливаются законами Тихонии и, следовательно, подчиняются логнормальному распределению, а зарплаты высшего руководства, определенные законами Диконии, регулируются масштабной инвариантностью. Возможно, именно этим соображением руководствовались швейцарские избиратели на референдуме в ноябре 2013 года, когда провалили законопроект об ограничении зарплат руководящих работников [100] О швейцарском референдуме см., например, http://www.wsj.com/articles/SB10001424052702304011304579217863967104606 .
. Вероятно, избиратели увидели в этом законопроекте попытку ниспровергнуть законы Диконии и решили, что его принятие было такой же глупостью, как принятие закона о снижении температуры кипения воды.
В начале этой книги, когда мы впервые столкнулись с мирами Тихонии и Диконии, мы использовали распределение Гаусса для описания Тихонии и распределение Коши для описания Диконии. На илл. 5 мы сравнили графики этих двух распределений и увидели, что кривая Гаусса приближается к оси x гораздо быстрее, чем кривая Коши, что «хвост» распределения Коши гораздо толще, чем у распределения Гаусса, и что кривая Коши тоньше и острее в середине.
С вашего разрешения я еще раз воспроизведу здесь илл. 5, чтобы ваша книга не слишком растрепалась от постоянного перелистывания взад и вперед (илл. 21). Выше мы отмечали, что радикальное различие между Тихонией и Диконией есть следствие небольшого, как кажется, математического различия между двумя распределениями. Вам, возможно, приходил в голову следующий вопрос: если нам удалось создать настолько разные миры на основе двух просто описываемых математических кривых, то почему бы не построить третью кривую, лежащую где-то между первыми двумя, чтобы создать мир, свойства которого будут промежуточными между распределениями Гаусса и Коши? Если такая мысль действительно вас посещала, значит, вы хорошо чувствуете математическое мышление. На самом деле все распределения, описывающие связи между вершинами безмасштабных сетей, оказываются где-то между Гауссом и Коши. Если Тихония характеризуется распределением Гаусса, а Дикония — распределением Коши, то масштабно-инвариантные математические объекты находятся где-то в промежутке между этими двумя случаями.
Читать дальше
Конец ознакомительного отрывка
Купить книгу