Полученное отображение многообразий одинаковой размерности n называется лагранжевым отображением , а его особенности — лагранжевыми особенностями.
Это — специальный класс особенностей гладких отображений многообразий одинаковой размерности. Для этого класса построена классификационная теория, аналогичная общей теории особенностей.
При n = 2 лагранжевы особенности общего положения исчерпываются складками и сборками, как и общие особенности (впрочем, лагранжева сборка имеет два лагранжево неэквивалентных [7] Лагранжева эквивалентность двух лагранжевых особенностей — это отображение первого лагранжева расслоения на второе, переводящее первую симплектическую структуру во вторую и первое лагранжево подмногообразие во второе.
варианта).
Особенности лагранжевых отображений трехмерных лагранжевых многообразий общего положения уже не все встречаются среди обычных особенностей общего положения.
Теперь мы покажем, что градиентные, нормальные и гауссовы особенности лагранжевы .
1. Пусть F — гладкая функция от р. Тогда многообразие q = ∂F/∂p лагранжево. Поэтому особенности градиентного отображения лагранжевы.
2. Рассмотрим гладкое подмногообразие в евклидовом пространстве. Рассмотрим множество всех перпендикулярных ему векторов (во всех его точках q). Многообразие, образованное векторами р, приложенными в точках р + q, лагранжево. Нормальное отображение можно рассматривать как лагранжево отображение этого многообразия на базу, (р, р + q) → (р + q).
3. Рассмотрим многообразие всех ориентированных прямых в евклидовом пространстве. Это многообразие симплектическое, так как его можно рассматривать как фазовое пространство движения точки по сфере (направление прямой определяет точку на сфере, а точка пересечения прямой с перпендикулярной ей касательной плоскостью сферы — величину импульса).
Рассмотрим многообразие ориентированных нормалей к поверхности в нашем пространстве. Это подмногообразие в симплектическом многообразии прямых лагранжево. Гауссово отображение можно рассматривать как лагранжево отображение (отображение проектирования построенного подмногообразия на сферу, являющуюся базой лагранжева расслоения фазового пространства).
Таким образом, теории градиентных, нормальных и гауссовых особенностей сводятся к теории лагранжевых особенностей.
Встретившаяся нам в конце симплектическая структура многообразия ориентированных прямых — не столь искусственное образование, как это кажется на первый взгляд. Дело в том, что множество решений любой вариационной задачи (или вообще множество решений уравнений Гамильтона с фиксированным значением функции Гамильтона) образует симплектическое многообразие, очень полезное для исследования свойств решений.
Рассмотрим, например, двухпараметрическое семейство лучей, срывающихся с геодезических на поверхности препятствия в трехмерном пространстве, как это указано на рис, 72, Это семейство оказывается двухмерным лагранжевым подмногообразием четырехмерного пространства всех лучей. Но в отличие от ранее встречавшихся нам лагранжевых подмногообразий это лагранжево многообразие само имеет особенности. Особенности эти проявляются там, где срывающийся луч — асимптотический для поверхности препятствия, Такие лучи образуют ребро возврата (типа х 2= у 3) лагранжева многообразия срывающихся лучей.
На этом ребре возврата есть еще особые точки, в окрестности которых многообразие срывающихся лучей устроено как раскрытый ласточкин хвост (поверхность в четырехмерном пространстве многочленов х 5+ ах 3+ bх 2+ сх + d, образованная многочленами с трехкратными корнями).
Эта поверхность встречается также в других задачах теории особенностей (например, при исследовании заметания каустики ребрами возврата движущихся волновых фронтов) и является, видимо, одним из основных примеров будущей теории лагранжевых многообразий с особенностями,
В евклидовой и в римановой геометрии имеется обширная теория внешней кривизны: кроме внутренних свойств подмногообразия, определяемых его метрикой, имеются еще различия в расположении подмногообразий с одинаковыми внутренними геометриями в объемлющем пространстве.
В симплектической геометрии, как недавно доказал А. Б, Гивенталь, дело обстоит проще: внутренняя геометрия (сужение симплектической структуры на множество касательных векторов к подмногообразию) определяет внешнюю. Иными словами, подмногообразия с одинаковой внутренней геометрией локально переводятся друг в друга сохраняющим симплектическую структуру диффеоморфизмом объемлющего пространства .
Читать дальше